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Preface

In his best-selling book Baby and Child Care, Dr. Benjamin Spock wrote ‘I think it

is preferable to accustom a baby to sleeping on his stomach from the beginning if he

is willing’. This statement was included in most editions of the book, and in most of

the 50 million copies sold from the 1950s into the 1990s. The advice was not

unusual, in that many pediatricians made similar recommendations at the time.

During this same period, from the 1950s into the 1990s, more than 100,000 babies

died of sudden infant death syndrome (SIDS), also called crib death in the United

States and cot death in the United Kingdom, where a seemingly healthy baby goes

to sleep and never wakes up.

In the early 1990s, researchers became aware that the risk of SIDS decreased by at

least 50% when babies were put to sleep on their backs rather than face down.

Governments in various countries launched educational initiatives such as the Back

to sleep campaigns in the UK and the US, which led to an immediate and dramatic

drop in the number of SIDS deaths.

While the loss of more than 100,000 children would be unspeakably sad in any

event, the real tragedy lies in the fact that many of these deaths could have been

prevented. Gilbert et al. (2005) write

‘Advice to put infants to sleep on the front for nearly half a century was contrary to

evidence available from 1970 that this was likely to be harmful. Systematic review of

preventable risk factors for SIDS from 1970 would have led to earlier recognition of

the risks of sleeping on the front and might have prevented over 10,000 infant deaths

in the UK and at least 50,000 in the Europe, the USA and Australasia.’

AN ETHICAL IMPERATIVE

This example is one of several cited by Sir Iain Chalmers in a talk entitled The

scandalous failure of scientists to cumulate scientifically (Chalmers, 2006). The

theme of this talk was that we live in a world where the utility of almost any

intervention will be tested repeatedly, and that rather than looking at any study in

isolation, we need to look at the body of evidence. While not all systematic reviews

carry the urgency of SIDS, the logic of looking at the body of evidence, rather than

trying to understand studies in isolation, is always compelling.

Meta-analysis refers to the statistical synthesis of results from a series of studies.

While the statistical procedures used in a meta-analysis can be applied to any set of

data, the synthesis will be meaningful only if the studies have been collected



systematically. This could be in the context of a systematic review, the process of

systematically locating, appraising, and then synthesizing data from a large number

of sources. Or, it could be in the context of synthesizing data from a select group of

studies, such as those conducted by a pharmaceutical company to assess the efficacy

of a new drug.

If a treatment effect (or effect size) is consistent across the series of studies, these

procedures enable us to report that the effect is robust across the kinds of popula-

tions sampled, and also to estimate the magnitude of the effect more precisely than

we could with any of the studies alone. If the treatment effect varies across the series

of studies, these procedures enable us to report on the range of effects, and may

enable us to identify factors associated with the magnitude of the effect size.

FROM NARRATIVE REVIEWS TO SYSTEMATIC REVIEWS

Prior to the 1990s, the task of combining data from multiple studies had been

primarily the purview of the narrative review. An expert in a given field would

read the studies that addressed a question, summarize the findings, and then arrive at

a conclusion – for example, that the treatment in question was, or was not, effective.

However, this approach suffers from some important limitations.

One limitation is the subjectivity inherent in this approach, coupled with the lack

of transparency. For example, different reviewers might use different criteria for

deciding which studies to include in the review. Once a set of studies has been

selected, one reviewer might give more credence to larger studies, while another

gives more credence to ‘quality’ studies and yet another assigns a comparable

weight to all studies. One reviewer may require a substantial body of evidence

before concluding that a treatment is effective, while another uses a lower threshold.

In fact, there are examples in the literature where two narrative reviews come to

opposite conclusions, with one reporting that a treatment is effective while the other

reports that it is not. As a rule, the narrative reviewer will not articulate (and may not

even be fully aware of) the decision-making process used to synthesize the data and

arrive at a conclusion.

A second limitation of narrative reviews is that they become less useful as more

information becomes available. The thought process required for a synthesis requires

the reviewer to capture the finding reported in each study, to assign an appropriate

weight to that finding, and then to synthesize these findings across all studies in the

synthesis. While a reviewer may be able to synthesize data from a few studies in their

head, the process becomes difficult and eventually untenable as the number of studies

increases. This is true even when the treatment effect (or effect size) is consistent from

study to study. Often, however, the treatment effect will vary as a function of study-

level covariates, such as the patient population, the dose of medication, the outcome

variable, and other factors. In these cases, a proper synthesis requires that the

researcher be able to understand how the treatment effect varies as a function of

these variables, and the narrative review is poorly equipped to address these kinds of

issues.

xxii Preface



THE SYSTEMATIC REVIEW AND META-ANALYSIS

For these reasons, beginning in the mid 1980s and taking root in the 1990s,

researchers in many fields have been moving away from the narrative review, and

adopting systematic reviews and meta-analysis.

For systematic reviews, a clear set of rules is used to search for studies, and then

to determine which studies will be included in or excluded from the analysis. Since

there is an element of subjectivity in setting these criteria, as well as in the

conclusions drawn from the meta-analysis, we cannot say that the systematic review

is entirely objective. However, because all of the decisions are specified clearly, the

mechanisms are transparent.

A key element in most systematic reviews is the statistical synthesis of the data,

or the meta-analysis. Unlike the narrative review, where reviewers implicitly assign

some level of importance to each study, in meta-analysis the weights assigned to

each study are based on mathematical criteria that are specified in advance. While

the reviewers and readers may still differ on the substantive meaning of the results

(as they might for a primary study), the statistical analysis provides a transparent,

objective, and replicable framework for this discussion.

The formulas used in meta-analysis are extensions of formulas used in primary

studies, and are used to address similar kinds of questions to those addressed in

primary studies. In primary studies we would typically report a mean and standard

deviation for the subjects. If appropriate, we might also use analysis of variance or

multiple regression to determine if (and how) subject scores were related to various

factors. Similarly, in a meta-analysis, we might report a mean and standard devia-

tion for the treatment effect. And, if appropriate, we would also use procedures

analogous to analysis of variance or multiple regression to assess the relationship

between the effect and study-level covariates.

Meta-analyses are conducted for a variety of reasons, not only to synthesize

evidence on the effects of interventions or to support evidence-based policy or

practice. The purpose of the meta-analysis, or more generally, the purpose of any

research synthesis has implications for when it should be performed, what model

should be used to analyze the data, what sensitivity analyses should be undertaken,

and how the results should be interpreted. Losing sight of the fact that meta-analysis

is a tool with multiple applications causes confusion and leads to pointless discus-

sions about what is the right way to perform a research synthesis, when there is no

single right way. It all depends on the purpose of the synthesis, and the data that are

available. Much of this book will expand on this idea.

META-ANALYSIS IS USED IN MANY FIELDS OF RESEARCH

In medicine, systematic reviews and meta-analysis form the core of a movement to

ensure that medical treatments are based on the best available empirical data. For

example, The Cochrane Collaboration has published the results of over 3700 meta-

analyses (as of January 2009) which synthesize data on treatments in all areas of
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health care including headaches, cancer, allergies, cardiovascular disease, pain pre-

vention, and depression. The reviews look at interventions relevant to neo-natal care,

childbirth, infant and childhood diseases, as well as diseases common in adolescents,

adults, and the elderly. The kinds of interventions assessed include surgery, drugs,

acupuncture, and social interventions. BMJ publishes a series of journals on Evidence

Based Medicine, built on the results from systematic reviews. Systematic reviews and

meta-analyses are also used to examine the performance of diagnostic tests, and of

epidemiological associations between exposure and disease prevalence, among other

topics.

Pharmaceutical companies usually conduct a series of studies to assess the

efficacy of a drug. They use meta-analysis to synthesize the data from these studies,

yielding a more powerful test (and more precise estimate) of the drug’s effect.

Additionally, the meta-analysis provides a framework for evaluating the series of

studies as a whole, rather than looking at each in isolation. These analyses play a

role in internal research, in submissions to governmental agencies, and in market-

ing. Meta-analyses are also used to synthesize data on adverse events, since these

events are typically rare and we need to accumulate information over a series of

studies to properly assess the risk of these events.

In the field of education, meta-analysis has been applied to topics as diverse as

the comparison of distance education with traditional classroom learning, assess-

ment of the impact of schooling on developing economies, and the relationship

between teacher credentials and student achievement. Results of these and similar

meta-analyses have influenced practice and policy in various locations around the

world.

In psychology, meta-analysis has been applied to basic science as well as in

support of evidence-based practice. It has been used to assess personality change

over the life span, to assess the influence of media violence on aggressive

behavior, and to examine gender differences in mathematics ability, leadership,

and nonverbal communication. Meta-analyses of psychological interventions have

been use to compare and select treatments for psychological problems, including

obsessive-compulsive disorder, impulsivity disorder, bulimia nervosa, depression,

phobias, and panic disorder.

In the field of criminology, government agencies have funded meta-analyses to

examine the relative effectiveness of various programs in reducing criminal beha-

vior. These include initiatives to prevent delinquency, reduce recidivism, assess the

effectiveness of different strategies for police patrols, and for the use of special

courts to deal with drug-related crimes.

In business, meta-analyses of the predictive validity of tests that are used as part

of the hiring process, have led to changes in the types of tests that are used to select

employees in many organizations. Meta-analytic results have also been used to

guide practices for the reduction of absenteeism, turnover, and counterproductive

behavior, and to assess the effectiveness of programs used to train employees.

In the field of ecology, meta-analyses are being used to identify the environmental

impact of wind farms, biotic resistance to exotic plant invasion, the effects of changes
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in the marine food chain, plant reactions to global climate change, the effectiveness of

conservation management interventions, and to guide conservation efforts.

META-ANALYSIS AS PART OF THE RESEARCH PROCESS

Systematic reviews and meta-analyses are used to synthesize the available evidence

for a given question to inform policy, as in the examples cited above from medicine,

social science, business, ecology, and other fields. While this is probably the most

common use of the methodology, meta-analysis can also play an important role in

other parts of the research process.

Systematic reviews and meta-analyses can play a role in designing new research.

As a first step, they can help determine whether the planned study is necessary.

It may be possible to find the required information by synthesizing data from prior

studies, and in this case, the research should not be performed. Iain Chalmers (2007)

made this point in an article entitled The lethal consequences of failing to make use

of all relevant evidence about the effects of medical treatments: the need for

systematic reviews.

In the event that the new study is needed, the meta-analysis may be useful in

helping to design that study. For example, the meta-analysis may show that in the

prior studies one outcome index had proven to be more sensitive than others, or that

a specific mode of administration had proven to be more effective than others, and

should be used in the planned study as well.

For these reasons, various government agencies, including institutes of health in

various countries, have been encouraging (or requiring) researchers to conduct a

meta-analysis of existing research prior to undertaking new funded studies.

The systematic review can also play a role in the publication of any new primary

study. In the introductory section of the publication, a systematic review can help to

place the new study in context by describing what we knew before, and what we

hoped to learn from the new study. In the discussion section of the publication, a

systematic review allows us to address not only the information provided by the new

study, but the body of evidence as enhanced by the new study. Iain Chalmers and

Michael Clarke (1998) see this approach as a way to avoid studies being reported

without context, which they refer to as ‘Islands in Search of Continents’. Systematic

reviews would provide this context in a more rigorous and transparent manner than

the narrative reviews that are typically used for this purpose.

THE INTENDED AUDIENCE FOR THIS BOOK

Since meta-analysis is a relatively new field, many people, including those who

actually use meta-analysis in their work, have not had the opportunity to learn about

it systematically. We hope that this volume will provide a framework that allows

them to understand the logic of meta-analysis, as well as how to apply and interpret

meta-analytic procedures properly.
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This book is aimed at researchers, clinicians, and statisticians. Our approach is

primarily conceptual. The reader will be able to skip the formulas and still under-

stand, for example, the differences between fixed-effect and random-effects analy-

sis, and the mechanisms used to assess the dispersion in effects from study to study.

However, for those with a statistical orientation, we include all the relevant for-

mulas, along with worked examples. Additionally, the spreadsheets and data files

can be downloaded from the web at www.Meta-Analysis.com.

This book can be used as the basis for a course in meta-analysis. Supplementary

materials and exercises are posted on the book’s web site.

This volume is intended for readers from various substantive fields, including

medicine, epidemiology, social science, business, ecology, and others. While we

have included examples from many of these disciplines, the more important mes-

sage is that meta-analytic methods that may have developed in any one of these

fields have application to all of them.

Since our goal in using these examples is to explain the meta-analysis itself rather

than to address the substantive issues, we provide only the information needed for

this purpose. For example, we may present an analysis showing that a treatment

reduces pain, while ignoring other analyses that show the same treatment increases

the risk of adverse events. Therefore, any reader interested in the substantive issues

addressed in an example should not rely on this book for that purpose.

AN OUTLINE OF THIS BOOK’S CONTENTS

Part 1 is an introduction to meta-analysis. We present a completed meta-analysis to

serve as an example, and highlight the elements of this analysis – the effect size for

each study, the summary effect, the dispersion of effects across studies, and so on.

Our intent is to show where each element fits into the analysis, and thus provide the

reader with a context as they move on to the subsequent parts of the book where

each of the elements is explored in detail.

Part 2 introduces the effect sizes, such as the standardized mean difference or the

risk ratio, that are computed for each study, and that serve as the unit of currency in

the meta-analysis. We also discuss factors that determine the variance of an effect

size and show how to compute the variance for each study, since this affects the

weight assigned to that study in the meta-analysis.

Part 3 discusses the two computational models used in the vast majority of meta-

analyses, the fixed-effect model and the random-effects model. We discuss the

conceptual and practical differences between the two, and show how to compute a

summary effect using either one.

Part 4 focuses on the issue of dispersion in effect sizes, the fact that the effect size

varies from one study to the next. We discuss methods to quantify the heterogeneity,

to test it, to incorporate it in the weighting scheme, and to understand it in a

substantive as well as a statistical context. Then, we discuss methods to explain

the heterogeneity. These include subgroup analyses to compare the effect in
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different subgroups of studies (analogous to analysis of variance in primary stu-

dies), and meta-regression (analogous to multiple regression).

Part 5 shows how to work with complex data structures. These include studies

that report an effect size for two or more independent subgroups, for two or more

outcomes or time-points, and for two or more comparison groups (such as two

treatments being compared with the same control).

Part 6 is used to address three separate issues. One chapter discusses the proce-

dure called vote counting, common in narrative reviews, and explains the problems

with this approach. One chapter discusses statistical power for a meta-analysis. We

show how meta-analysis often (but not always) yields a more powerful test of the

null than do any of the included studies. Another chapter addresses the question of

publication bias. We explain what this is, and discuss methods that have been

developed to assess its potential impact.

Part 7 focuses on the issue of why we work with effect sizes in a meta-analysis. In

one chapter we explain why we work with effect sizes rather than p-values. In

another we explain why we compute an effect size for each study, rather than

summing data over all studies and then computing an effect size for the summed

data. The final chapter in this part shows how the use of inverse-variance weights

can be extended to other applications including Bayesian meta-analysis and ana-

lyses based on individual participant data.

Part 8 includes chapters on methods that are sometimes used in meta-analysis but

that fall outside the central narrative of this volume. These include meta-analyses

based on p-values, alternate approaches (such as the Mantel-Haenszel method) for

assigning study weights, and options sometimes used in psychometric meta-analyses.

Part 9 is dedicated to a series of general issues related to meta-analysis. We

address the question of when it makes sense to perform a meta-analysis. This Part is

also the location for a series of chapters on separate issues such as reporting the

results of a meta-analysis, and the proper use of cumulative meta-analysis. Finally,

we discuss some of the criticisms of meta-analysis and try to put them in context.

Part 10 is a discussion of resources for meta-analysis and systematic reviews.

This includes an overview of several computer programs for meta-analysis. It also

includes a discussion of organizations that promote the use of systematic reviews

and meta-analyses in specific fields, and a list of useful web sites.

WHAT THIS BOOK DOES NOT COVER

Other elements of a systematic review

This book deals only with meta-analysis, the statistical formulas and methods used

to synthesize data from a set of studies. A meta-analysis can be applied to any data,

but if the goal of the analysis is to provide a synthesis of a body of data from various

sources, then it is usually imperative that the data be compiled as part of a

systematic review.
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A systematic review incorporates many components, such as specification of

the question to be addressed, determination of methods to be used for searching

the literature and for including or excluding studies, specification of mechanisms

to appraise the validity of the included studies, specification of methods to be

used for performing the statistical analysis, and a mechanism for disseminating

the results.

If the entire review is performed properly, so that the search strategy matches the

research question, and yields a reasonably complete and unbiased collection of

the relevant studies, then (providing that the included studies are themselves valid)

the meta-analysis will also be addressing the intended question. On the other hand,

if the search strategy is flawed in concept or execution, or if the studies are

providing biased results, then problems exist in the review that the meta-analysis

cannot correct.

In Part 10 we include an annotated listing of suggested readings for the other

components in the systematic review, but these components are not otherwise

addressed in this volume.

Other meta-analytic methods

In this volume we focus primarily on meta-analyses of effect sizes. That is, analyses

where each study yields an estimate of some statistic (a standardized mean differ-

ence, a risk ratio, a prevalence, and so on) and our goal is to assess the dispersion in

these effects and (if appropriate) compute a summary effect. The vast majority of

meta-analyses performed use this approach. We deal only briefly (see Part 8) with

other approaches, such as meta-analyses that combine p-values rather than effect

sizes. We do not address meta-analysis of diagnostic tests.

Further Reading

Chalmers, I. (2007). The lethal consequences of failing to make use of all relevant evidence about

the effects of medical treatments: the need for systematic reviews. In P. Rothwell(ed.),
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Web Site

The web site for this book is www.Meta-Analysis.com.

There, you will find easy access to

n All of the datasets used in this book

n All computations from this book as Excel spreadsheets

n Additional formulas for computing effect sizes

n Any corrections to this book

n Links to other meta-analysis sites

n A free trial of Comprehensive Meta Analysis

For those planning to use this book as a text, there are also worked examples and

exercises.

Please send any questions or comments to MichaelB@Meta-Analysis.com
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Introduction
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CHAPTER 1

How a Meta-Analysis Works

Introduction
Individual studies
The summary effect
Heterogeneity of effect sizes

INTRODUCTION

Figure 1.1 illustrates a meta-analysis that shows the impact of high dose versus

standard dose of statins in preventing death and myocardial infarction (MI). This

analysis is adapted from one reported by Cannon et al. and published in the Journal

of the American College of Cardiology (2006).

Our goal in presenting this here is to introduce the various elements in a

meta-analysis (the effect size for each study, the weight assigned to each effect

size, the estimate of the summary effect, and so on) and show where each fits into

the larger scheme. In the chapters that follow, each of these elements will be

explored in detail.

INDIVIDUAL STUDIES

The first four rows on this plot represent the four studies. For each, the study name is

shown at left, followed by the effect size, the relative weight assigned to the study

for computing the summary effect, and the p-value. The effect size and weight are

also shown schematically.

Effect size

The effect size, a value which reflects the magnitude of the treatment effect or (more

generally) the strength of a relationship between two variables, is the unit of

currency in a meta-analysis. We compute the effect size for each study, and then

Introduction to Meta-Analysis.  Michael Borenstein, L. V. Hedges, J. P. T. Higgins and H. R. Rothstein  
© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-05724-7



work with the effect sizes to assess the consistency of the effect across studies and to

compute a summary effect.

The effect size could represent the impact of an intervention, such as the impact of

medical treatment on risk of infection, the impact of a teaching method on test scores,

or the impact of a new protocol on the number of salmon successfully returning

upstream. The effect size is not limited to the impact of interventions, but could

represent any relationship between two variables, such as the difference in test scores

for males versus females, the difference in cancer rates for persons exposed or not

exposed to second-hand smoke, or the difference in cardiac events for persons with

two distinct personality types. In fact, what we generally call an effect size could refer

simply to the estimate of a single value, such as the prevalence of Lyme disease.

In this example the effect size is the risk ratio. A risk ratio of 1.0 would mean that

the risk of death or MI was the same in both groups, while a risk ratio less than 1.0

would mean that the risk was lower in the high-dose group, and a risk ratio greater

than 1.0 would mean that the risk was lower in the standard-dose group.

The effect size for each study is represented by a square, with the location of the

square representing both the direction and magnitude of the effect. Here, the effect

size for each study falls to the left of center (indicating a benefit for the high-dose

group). The effect is strongest (most distant from the center) in the TNT study and

weakest in the Ideal study.

Note. For measures of effect size based on ratios (as in this example) a ratio of 1.0

represents no difference between groups. For measures of effect based on differences

(such as mean difference), a difference of 0.0 represents no difference between groups.

Figure 1.1 High-dose versus standard-dose of statins (adapted from Cannon et al., 2006).
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Precision

In the schematic, the effect size for each study is bounded by a confidence

interval, reflecting the precision with which the effect size has been estimated

in that study. The confidence interval for the last study (Ideal) is noticeably

narrower than that for the first study (Prove-it), reflecting the fact that the Ideal

study has greater precision. The meaning of precision and the factors that affect

precision are discussed in Chapter 8.

Study weights

The solid squares that are used to depict each of the studies vary in size, with the size

of each square reflecting the weight that is assigned to the corresponding study

when we compute the summary effect. The TNT and Ideal studies are assigned

relatively high weights, while somewhat less weight is assigned to the A to Z study

and still less to the Prove-it study.

As one would expect, there is a relationship between a study’s precision and that

study’s weight in the analysis. Studies with relatively good precision (TNT and

Ideal) are assigned more weight while studies with relatively poor precision (Prove-

it) are assigned less weight. Since precision is driven primarily by sample size, we

can think of the studies as being weighted by sample size.

However, while precision is one of the elements used to assign weights, there are

often other elements as well. In Part 3 we discuss different assumptions that one can

make about the distribution of effect sizes across studies, and how these affect the

weight assigned to each study.

p - values

For each study we show the p-value for a test of the null. There is a necessary

correspondence between the p-value and the confidence interval, such that the

p-value will fall under 0.05 if and only if the 95% confidence interval does not

include the null value. Therefore, by scanning the confidence intervals we can

easily identify the statistically significant studies. The role of p-values in the

analysis, as well as the relationship between p-values and effect size, is discussed

in Chapter 32.

In this example, for three of the four studies the confidence interval crosses the

null, and the p-value is greater than 0.05. In one (the TNT study) the confidence

interval does not cross the null, and the p-value falls under 0.05.

THE SUMMARY EFFECT

One goal of the synthesis is usually to compute a summary effect. Typically we

report the effect size itself, as well as a measure of precision and a p-value.
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Effect size

On the plot the summary effect is shown on the bottom line. In this example the

summary risk ratio is 0.85, indicating that the risk of death (or MI) was 15% lower

for patients assigned to the high dose than for patients assigned to standard dose.

The summary effect is nothing more than the weighted mean of the individual

effects. However, the mechanism used to assign the weights (and therefore the

meaning of the summary effect) depends on our assumptions about the distribution

of effect sizes from which the studies were sampled. Under the fixed-effect model, we

assume that all studies in the analysis share the same true effect size, and the summary

effect is our estimate of this common effect size. Under the random-effects model, we

assume that the true effect size varies from study to study, and the summary effect is

our estimate of the mean of the distribution of effect sizes. This is discussed in Part 3.

Precision

The summary effect is represented by a diamond. The location of the diamond

represents the effect size while its width reflects the precision of the estimate. In this

example the diamond is centered at 0.85, and extends from 0.79 to 0.92, meaning

that the actual impact of the high dose (as compared to the standard) likely falls

somewhere in that range.

The precision addresses the accuracy of the summary effect as an estimate of the

true effect. However, as discussed in Part 3 the exact meaning of the precision

depends on the statistical model.

p - value

The p-value for the summary effect is 0.00003. This p-value reflects both the

magnitude of the summary effect size and also the volume of information on

which the estimate is based. Note that the p-value for the summary effect is

substantially more compelling than that of any single study. Indeed, only one of

the four studies had a p-value under 0.05. The relationship between p-values and

effect sizes is discussed in Chapter 32.

HETEROGENEITY OF EFFECT SIZES

In this example the treatment effect is consistent across all studies (by a criterion

explained in Chapter 16), but such is not always the case. A key theme in this

volume is the importance of assessing the dispersion of effect sizes from study to

study, and then taking this into account when interpreting the data. If the effect size

is consistent, then we will usually focus on the summary effect, and note that this

effect is robust across the domain of studies included in the analysis. If the effect

size varies modestly, then we might still report the summary effect but note that the
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true effect in any given study could be somewhat lower or higher than this value. If

the effect varies substantially from one study to the next, our attention will shift

from the summary effect to the dispersion itself.

Because the dispersion in observed effects is partly spurious (it includes both real

difference in effects and also random error), before trying to interpret the variation

in effects we need to determine what part (if any) of the observed variation is real. In

Part 4 we show how to partition the observed variance into the part due to error and

the part that represents variation in true effect sizes, and then how to use this

information in various ways.

In this example our goal was to estimate the summary effect in a single popula-

tion. In some cases, however, we will want to compare the effect size for one

subgroup of studies versus another (say, for studies that used an elderly population

versus those that used a relatively young population). In other cases we may want to

assess the impact of putative moderators (or covariates) on the effect size (say,

comparing the effect size in studies that used doses of 10, 20, 40, 80, 160 mg.).

These kinds of analyses are also discussed in Part 4.

SUMMARY POINTS

� To perform a meta-analysis we compute an effect size and variance for each

study, and then compute a weighted mean of these effect sizes.

� To compute the weighted mean we generally assign more weight to the more

precise studies, but the rules for assigning weights depend on our assumptions

about the distribution of true effects.
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CHAPTER 2

Why Perform a Meta-Analysis

Introduction
The streptokinase meta-analysis
Statistical significance
Clinical importance of the effect
Consistency of effects

INTRODUCTION

Why perform a meta-analysis? What are the advantages of using statistical methods

to synthesize data rather than taking the results that had been reported for each study

and then having these collated and synthesized by an expert?

In this chapter we start at the point where we have already selected the studies to

be included in the review, and are planning the synthesis itself. We do not address

the differences between systematic reviews and narrative reviews in the process of

locating and selecting studies. These differences can be critically important, but

(as always) our focus is on the data analysis rather than the full process of the

review.

The goal of a synthesis is to understand the results of any study in the context of

all the other studies. First, we need to know whether or not the effect size is

consistent across the body of data. If it is consistent, then we want to estimate the

effect size as accurately as possible and to report that it is robust across the kinds of

studies included in the synthesis. On the other hand, if it varies substantially from

study to study, we want to quantify the extent of the variance and consider the

implications.

Meta-analysis is able to address these issues whereas the narrative review is not.

We start with an example to show how meta-analysis and narrative review would

approach the same question, and then use this example to highlight the key

differences between the two.
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THE STREPTOKINASE META-ANALYSIS

During the timeperiod beginning in1959andending in1988 (aspanof nearly 30 years)

therewerea totalof33randomized trialsperformedtoassess theabilityof streptokinase

to prevent death following a heart attack. Streptokinase, a so-called clot buster which is

administered intravenously, was hypothesized to dissolve the clot causing the heart

attack, and thus increase the likelihood of survival. The trials all followed similar

protocols, with patients assigned at random to either treatment or placebo. The out-

come, whether or not the patient died, was the same in all the studies.

The trials varied substantially in size. The median sample size was slightly

over 100 but there was one trial with a sample size in the range of 20 patients,

and two large scale trials which enrolled some 12,000 and 17,000 patients, respec-

tively. Of the 33 studies, six were statistically significant while the other 27 were

not, leading to the perception that the studies yielded conflicting results.

In 1992 Lau et al. published a meta-analysis that synthesized the results from the

33 studies. The presentation that follows is based on the Lau paper (though we use a

risk ratio where Lau used an odds ratio).

The forest plot (Figure 2.1) provides context for the analysis. An effect size to the

left of center indicates that treated patients were more likely to survive, while an

Figure 2.1 Impact of streptokinase on mortality (adapted from Lau et al., 1992).
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effect size to the right of center indicates that control patients were more likely to

survive.

The plot serves to highlight the following points.

� The effect sizes are reasonably consistent from study to study. Most fall in the

range of 0.50 to 0.90, which suggests that it would be appropriate to compute a

summary effect size.

� The summary effect is a risk ratio of 0.79 with a 95% confidence interval of 0.72

to 0.87 (that is, a 21% decrease in risk of death, with 95% confidence interval of

13% to 28%). The p-value for the summary effect is 0.0000008.

� The confidence interval that bounds each effect size indicates the precision in

that study. If the interval excludes 1.0, the p-value is less than 0.05 and the study

is statistically significant. Six of the studies were statistically significant while 27

were not.

In sum, the treatment reduces the risk of death by some 21%. And, this effect was

reasonably consistent across all studies in the analysis.

Over the course of this volume we explain the statistical procedures that led to

these conclusions. Our goal in the present chapter is simply to explain that meta-

analysis does offer these mechanisms, whereas the narrative review does not. The

key differences are as follows.

STATISTICAL SIGNIFICANCE

One of the first questions asked of a study is the statistical significance of the results.

The narrative review has no mechanism for synthesizing the p-values from the

different studies, and must deal with them as discrete pieces of data. In this example

six of the studies were statistically significant while the other 27 were not, which led

some to conclude that there was evidence against an effect, or that the results were

inconsistent (see vote counting in Chapter 28). By contrast, the meta-analysis

allows us to combine the effects and evaluate the statistical significance of the

summary effect. The p-value for the summary effect is p 5 0.0000008.

While one might assume that 27 studies failed to reach statistical significance

because they reported small effects, it is clear from the forest plot that this is not the

case. In fact, the treatment effect in many of these studies was actually larger than

the treatment effect in the six studies that were statistically significant. Rather, the

reason that 82% of the studies were not statistically significant is that these studies

had small sample sizes and low statistical power. In fact, as discussed in Chapter 29,

most had power of less than 20%. By contrast, power for the meta-analysis

exceeded 99.9% (see Chapter 29).

As in this example, if the goal of a synthesis is to test the null hypothesis,

then meta-analysis provides a mathematically rigorous mechanism for this

purpose. However, meta-analysis also allows us to move beyond the question of
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statistical significance, and address questions that are more interesting and also

more relevant.

CLINICAL IMPORTANCE OF THE EFFECT

Since the point of departure for a narrative review is usually the p-values reported

by the various studies, the review will often focus on the question of whether or not

the body of evidence allows us to reject the null hypothesis. There is no good

mechanism for discussing the magnitude of the effect. By contrast, the meta-

analytic approaches discussed in this volume allow us to compute an estimate of

the effect size for each study, and these effect sizes fall at the core of the analysis.

This is important because the effect size is what we care about. If a clinician or

patient needs to make a decision about whether or not to employ a treatment, they

want to know if the treatment reduces the risk of death by 5% or 10% or 20%, and

this is the information carried by the effect size. Similarly, if we are thinking of

implementing an intervention to increase the test scores of students, or to reduce the

number of incarcerations among at-risk juveniles, or to increase the survival time

for patients with pancreatic cancer, the question we ask is about the magnitude of

the effect. The p-value can tell us only that the effect is not zero, and to report simply

that the effect is not zero is to miss the point.

CONSISTENCY OF EFFECTS

When we are working with a collection of studies, it is critically important to

ask whether or not the effect size is consistent across studies. The implications

are quite different for a drug that consistently reduces the risk of death by 20%,

as compared with a drug that reduces the risk of death by 20% on average, but

that increases the risk by 20% in some populations while reducing it by 60% in

others.

The narrative review has no good mechanism for assessing the consistency of

effects. The narrative review starts with p-values, and because the p-value is driven

by the size of a study as well as the effect in that study, the fact that one study

reported a p-value of 0.001 and another reported a p-value of 0.50 does not mean

that the effect was larger in the former. The p-value of 0.001 could reflect a large

effect size but it could also reflect a moderate or small effect in a large study (see the

GISSI-1 study in Figure 2.1, for example). The p-value of 0.50 could reflect a small

(or nil) effect size but could also reflect a large effect in a small study (see the

Fletcher study, for example).

This point is often missed in narrative reviews. Often, researchers interpret

a nonsignificant result to mean that there is no effect. If some studies are statistically

significant while others are not, the reviewers see the results as conflicting. This

problem runs through many fields of research. To borrow a phrase from Cary

Grant’s character in Arsenic and Old Lace, we might say that it practically gallops.

12 Introduction



Schmidt (1996) outlines the impact of this practice on research and policy.

Suppose an idea is proposed that will improve test scores for African-American

children. A number of studies are performed to test the intervention. The effect

size is positive and consistent across studies but power is around 50%, and only

around 50% of the studies yield statistically significant results. Researchers

report that the evidence is ‘conflicting’ and launch a series of studies to

determine why the intervention had a positive effect in some studies but not

others (Is it the teacher’s attitude? Is it the students’ socioeconomic status?),

entirely missing the point that the effect was actually consistent from one study

to the next. No pattern can be found (since none exists). Eventually, researchers

decide that the issue cannot be understood. A promising idea is lost, and a

perception builds that research is not to be trusted. A similar point is made by

Meehl (1978, 1990).

Rossi (1997) gives an example from the field of memory research that shows

what can happen to a field of research when reviewers work with discrete p-values.

The issue of whether or not researchers could demonstrate the spontaneous recovery

of previously extinguished associations had a bearing on a number of important

learning theories, and some 40 studies on the topic were published between 1948

and 1969. Evidence of the effect (that is, statistically significant findings) was

obtained in only about half the studies, which led most texts and reviews to conclude

that the effect was ephemeral and ‘the issue was not so much resolved as it was

abandoned’ (p. 179). Later, Rossi returned to these studies and found that the

average effect size (d) was 0.39. If we assume that this is the population effect

size, the mean power for these studies would have been slightly under 50%. On this

basis we would expect about half the studies to yield a significant effect, which is

exactly what happened.

Even worse, when the significant study was performed in one type of sample and

the nonsignificant study was performed in another type of sample, researchers

would sometimes interpret this difference as meaning that the effect existed in

one population but not the other. Abelson (1997) notes that if a treatment effect

yields a p-value of 0.07 for wombats and 0.05 for dingbats we are likely to see a

discussion explaining why the treatment is effective only in the latter group—

completely missing the point that the treatment effect may have been virtually

identical in the two. The treatment effect may have even been larger for the

wombats if the sample size was smaller.

By contrast, meta-analysis completely changes the landscape. First, we work with

effect sizes (not p-values) to determine whether or not the effect size is consistent

across studies. Additionally, we apply methods based on statistical theory to allow

that some (or all) of the observed dispersion is due to random sampling variation

rather than differences in the true effect sizes. Then, we apply formulas to partition

the variance into random error versus real variance, to quantify the true differences

among studies, and to consider the implications of this variance. In the Schmidt and

the Rossi examples, a meta-analysis might have found that the effect size was
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consistent across studies, and that all of the observed variation in effects could be

attributed to random sampling error.

SUMMARY POINTS

� Since the narrative review is based on discrete reports from a series of studies,

it provides no real mechanism for synthesizing the data. To borrow a phrase

from Abelson, it involves doing arithmetic with words. And, when the words

are based on p-values the words are the wrong words.

� By contrast, in a meta-analysis we introduce two fundamental changes. First,

we work directly with the effect size from each study rather than the p-value.

Second, we include all of the effects in a single statistical synthesis. This is

critically important for the goal of computing (and testing) a summary effect.

Meta-analysis also allows us to assess the dispersion of effects, and distin-

guish between real dispersion and spurious dispersion.
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CHAPTER 3

Overview

Treatment effects and effect sizes
Parameters and estimates
Outline of effect size computations

TREATMENT EFFECTS AND EFFECT SIZES

The terms treatment effects and effect sizes are used in different ways by different

people. Meta-analyses in medicine often refer to the effect size as a treatment effect,

and this term is sometimes assumed to refer to odds ratios, risk ratios, or risk

differences, which are common in meta-analyses that deal with medical interven-

tions. Similarly, meta-analyses in the social sciences often refer to the effect size

simply as an effect size and this term is sometimes assumed to refer to standardized

mean differences or to correlations, which are common in social science meta-

analyses.

In fact, though, both the terms effect size and treatment effect can refer to any of

these indices, and the distinction between these terms lies not in the index itself but

rather in the nature of the study. The term effect size is appropriate when the index is

used to quantify the relationship between two variables or a difference between two

groups. By contrast, the term treatment effect is appropriate only for an index used to

quantify the impact of a deliberate intervention. Thus, the difference between males

and females could be called an effect size only, while the difference between treated

and control groups could be called either an effect size or a treatment effect.

While most meta-analyses focus on relationships between variables, some have

the goal of estimating a mean or risk or rate in a single population. For example, a

meta-analysis might be used to combine several estimates for the prevalence of

Lyme disease in Wabash or the mean SAT score for students in Utah. In these cases

the index is clearly not a treatment effect, and is also not an effect size, since effect

implies a relationship. Rather, the parameter being estimated could be called simply

a single group summary.
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Note, however, that the classification of an index as an effect size and/or a

treatment effect (or simply a single group summary) has no bearing on the computa-

tions. In the meta-analysis itself we have simply a series of values and their

variances, and the same mathematical formulas apply. In this volume we generally

use the term effect size, but we use it in a generic sense, to include also treatment

effects, single group summaries, or even a generic statistic.

How to choose an effect size

Three major considerations should drive the choice of an effect size index. The first

is that the effect sizes from the different studies should be comparable to one

another in the sense that they measure (at least approximately) the same thing.

That is, the effect size should not depend on aspects of study design that may vary

from study to study (such as sample size or whether covariates are used).

The second is that estimates of the effect size should be computable from the

information that is likely to be reported in published research reports. That is, it

should not require the re-analysis of the raw data (unless these are known to be

available). The third is that the effect size should have good technical properties.

For example, its sampling distribution should be known so that variances and

confidence intervals can be computed.

Additionally, the effect size should be substantively interpretable. This means

that researchers in the substantive area of the work represented in the synthesis

should find the effect size meaningful. If the effect size is not inherently

meaningful, it is usually possible to transform the effect size to another metric

for presentation. For example, the analyses may be performed using the log risk

ratio but then transformed to a risk ratio (or even to illustrative risks) for

presentation.

In practice, the kind of data used in the primary studies will usually lead to a pool

of two or three effect sizes that meet the criteria outlined above, which makes the

process of selecting an effect size relatively straightforward. If the summary data

reported by the primary study are based on means and standard deviations in two

groups, the appropriate effect size will usually be either the raw difference in means,

the standardized difference in means, or the response ratio. If the summary data are

based on a binary outcome such as events and non-events in two groups the

appropriate effect size will usually be the risk ratio, the odds ratio, or the risk

difference. If the primary study reports a correlation between two variables, then the

correlation coefficient itself may serve as the effect size.

PARAMETERS AND ESTIMATES

Throughout this volume we make the distinction between an underlying effect size

parameter (denoted by the Greek letter �) and the sample estimate of that parameter

(denoted by Y).
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If a study had an infinitely large sample size then it would yield an effect size Y

that was identical to the population parameter �. In fact, though, sample sizes are

finite and so the effect size estimate Y always differs from � by some amount. The

value of Y will vary from sample to sample, and the distribution of these values is

the sampling distribution of Y. Statistical theory allows us to estimate the sampling

distribution of effect size estimates, and hence their standard errors.

OUTLINE OF EFFECT SIZE COMPUTATIONS

Table 3.1 provides an outline of the computational formulas that follow.

These are some of the more common effect sizes and study designs. A more

extensive array of formulas is offered in Borenstein et al. (2009).

Table 3.1 Roadmap of formulas in subsequent chapters.

Effect sizes based on means (Chapter 4)
Raw (unstandardized) mean difference (D )

Based on studies with independent groups
Based on studies with matched groups or pre-post designs

Standardized mean difference (d or g)
Based on studies with independent groups
Based on studies with matched groups or pre-post designs

Response ratios (R )
Based on studies with independent groups

Effect sizes based on binary data (Chapter 5)
Risk ratio (RR )

Based on studies with independent groups
Odds ratio (OR )

Based on studies with independent groups
Risk difference (RD )

Based on studies with independent groups
Effect sizes based on correlational data (Chapter 6)

Correlation (r )
Based on studies with one group
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CHAPTER 4

Effect Sizes Based on Means

Introduction
Raw (unstandardized) mean difference D
Standardized mean difference, d and g
Response ratios

INTRODUCTION

When the studies report means and standard deviations, the preferred effect size is

usually the raw mean difference, the standardized mean difference, or the response

ratio. These effect sizes are discussed in this chapter.

RAW (UNSTANDARDIZED) MEAN DIFFERENCE D

When the outcome is reported on a meaningful scale and all studies in the analysis use

the same scale, the meta-analysis can be performed directly on the raw difference in

means (henceforth, we will use the more common term, raw mean difference). The

primary advantage of the raw mean difference is that it is intuitively meaningful,

either inherently (for example, blood pressure, which is measured on a known scale)

or because of widespread use (for example, a national achievement test for students,

where all relevant parties are familiar with the scale).

Consider a study that reports means for two groups (Treated and Control) and

suppose we wish to compare the means of these two groups. Let �1 and �2 be the true

(population) means of the two groups. The population mean difference is defined as

D ¼ �1 � �2: ð4:1Þ

In the two sections that follow we show how to compute an estimate D of this

parameter and its variance from studies that used two independent groups and from

studies that used paired groups or matched designs.
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Computing D from studies that use independent groups

We can estimate the mean difference D from a study that used two independent

groups as follows. Let X1 and X2 be the sample means of the two independent

groups. The sample estimate of D is just the difference in sample means, namely

D ¼ X1 � X2: ð4:2Þ

Note that uppercase D is used for the raw mean difference, whereas lowercase d will

be used for the standardized mean difference (below).

Let S1 and S2 be the sample standard deviations of the two groups, and n1 and n2

be the sample sizes in the two groups. If we assume that the two population standard

deviations are the same (as is assumed to be the case in most parametric data

analysis techniques), so that �1 5�2 5 �, then the variance of D is

VD 5
n1 þ n2

n1n2

S2
pooled; ð4:3Þ

where

Spooled 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1ÞS2

1 þ ðn2 � 1ÞS2
2

n1 þ n2 � 2

s
: ð4:4Þ

If we don’t assume that the two population standard deviations are the same, then

the variance of D is

VD 5
S2

1

n1

þ S2
2

n2

: ð4:5Þ

In either case, the standard error of D is then the square root of V,

SED 5
ffiffiffiffiffiffi
VD

p
: ð4:6Þ

For example, suppose that a study has sample means X15 103.00, X2 5 100.00,

sample standard deviations S1 5 5.5, S2 5 4.5, and sample sizes n1 5 n2 5 50. The

raw mean difference D is

D 5 103:00� 100:00 5 3:00:

If we assume that �1 5�2 then the pooled standard deviation within groups is

Spooled 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50� 1ð Þ � 5:52 þ 50� 1ð Þ � 4:52

50þ 50� 2

s
5 5:0249:

The variance and standard error of D are given by

VD 5
50þ 50

50� 50
� 5:02492 5 1:0100;

and
SED 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0100
p

5 1:0050:
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If we do not assume that �15 �2 then the variance and standard error of D are

given by

VD 5
5:52

50
þ 4:52

50
5 1:0100

and

SED 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0100
p

5 1:0050:

In this example formulas (4.3) and (4.5) yield the same result, but this will be true

only if the sample size and/or the estimate of the variances is the same in the two

groups.

Computing D from studies that use matched groups or pre-post scores

The previous formulas are appropriate for studies that use two independent groups.

Another study design is the use of matched groups, where pairs of participants are

matched in some way (for example, siblings, or patients at the same stage of

disease), with the two members of each pair then being assigned to different groups.

The unit of analysis is the pair, and the advantage of this design is that each pair

serves as its own control, reducing the error term and increasing the statistical

power. The magnitude of the impact depends on the correlation between (for

example) siblings, with a higher correlation yielding a lower variance (and

increased precision).

The sample estimate of D is just the sample mean difference, D. If we have the

difference score for each pair, which gives us the mean difference Xdiff and the

standard deviation of these differences (Sdiff), then

D 5 Xdiff ; ð4:7Þ

VD 5
S2

diff

n
; ð4:8Þ

where n is the number of pairs, and

SED 5
ffiffiffiffiffiffi
VD

p
: ð4:9Þ

For example, if the mean difference is 5.00 with standard deviation of the difference

of 10.00 and n of 50 pairs, then

D 5 5:0000;

VD 5
10:002

50
5 2:0000; ð4:10Þ

and

SED 5
ffiffiffiffiffiffiffiffiffi
2:00
p

5 1:4142: ð4:11Þ
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Alternatively, if we have the mean and standard deviation for each set of scores (for

example, siblings A and B), the difference is

D ¼ X1 � X2: ð4:12Þ

The variance is again given by

VD 5
S2

diff

n
; ð4:13Þ

where n is the number of pairs, and the standard error is given by

SED 5
ffiffiffiffiffiffi
VD

p
: ð4:14Þ

However, in this case we need to compute the standard deviation of the difference

scores from the standard deviation of each sibling’s scores. This is given by

Sdiff 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1 þ S2
2 � 2� r � S1 � S2

q
ð4:15Þ

where r is the correlation between ‘siblings’ in matched pairs. If S1 5 S2, then (4.15)

simplifies to

Sdiff 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� S2

pooledð1� rÞ
q

: ð4:16Þ

In either case, as r moves toward 1.0 the standard error of the paired difference will

decrease, and when r 5 0 the standard error of the difference is the same as it would

be for a study with two independent groups, each of size n.

For example, suppose the means for siblings A and B are 105.00 and 100.00, with

standard deviations 10 and 10, the correlation between the two sets of scores is 0.50,

and the number of pairs is 50. Then

D 5 105:00� 100:00 5 5:0000;

VD 5
10:002

50
5 2:0000;

and

SED 5
ffiffiffiffiffiffiffiffiffi
2:00
p

5 1:4142:

In the calculation of VD, the Sdiff is computed using

Sdiff 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102 þ 102 � 2� 0:50� 10� 10

p
5 10:0000

or

Sdiff 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 102ð1� 0:50Þ

q
5 10:0000:

The formulas for matched designs apply to pre-post designs as well. The pre and

post means correspond to the means in the matched groups, n is the number of

subjects, and r is the correlation between pre-scores and post-scores.
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Calculation of effect size estimates from information that is reported

When a researcher has access to a full set of summary data such as the mean,

standard deviation, and sample size for each group, the computation of the effect

size and its variance is relatively straightforward. In practice, however, the

researcher will often be working with only partial data. For example, a paper may

publish only the p-value, means and sample sizes from a test of significance, leaving

it to the meta-analyst to back-compute the effect size and variance. For information

on computing effect sizes from partial information, see Borenstein et al. (2009).

Including different study designs in the same analysis

Sometimes a systematic review will include studies that used independent groups

and also studies that used matched groups. From a statistical perspective the effect

size (D) has the same meaning regardless of the study design. Therefore, we can

compute the effect size and variance from each study using the appropriate formula,

and then include all studies in the same analysis. While there is no technical barrier

to using different study designs in the same analysis, there may be a concern

that studies which used different designs might differ in substantive ways as well

(see Chapter 40).

For all study designs (whether using independent or paired groups) the direction

of the effect (X1 � X2 or X2 � X1) is arbitrary, except that the researcher must

decide on a convention and then apply this consistently. For example, if a positive

difference will indicate that the treated group did better than the control group, then

this convention must apply for studies that used independent designs and for studies

that used pre-post designs. In some cases it might be necessary to reverse the

computed sign of the effect size to ensure that the convention is followed.

STANDARDIZED MEAN DIFFERENCE, d AND g

As noted, the raw mean difference is a useful index when the measure is mean-

ingful, either inherently or because of widespread use. By contrast, when the

measure is less well known (for example, a proprietary scale with limited distribu-

tion), the use of a raw mean difference has less to recommend it. In any event, the

raw mean difference is an option only if all the studies in the meta-analysis use the

same scale. If different studies use different instruments (such as different psycho-

logical or educational tests) to assess the outcome, then the scale of measurement

will differ from study to study and it would not be meaningful to combine raw mean

differences.

In such cases we can divide the mean difference in each study by that study’s

standard deviation to create an index (the standardized mean difference) that would be

comparable across studies. This is the same approach suggested by Cohen (1969, 1987)

in connection with describing the magnitude of effects in statistical power analysis.
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The standardized mean difference can be considered as being comparable across

studies based on either of two arguments (Hedges and Olkin, 1985). If the outcome

measures in all studies are linear transformations of each other, the standardized mean

difference can be seen as the mean difference that would have been obtained if all data

were transformed to a scale where the standard deviation within-groups was equal to 1.0.

The other argument for comparability of standardized mean differences is the fact

that the standardized mean difference is a measure of overlap between distributions.

In this telling, the standardized mean difference reflects the difference between the

distributions in the two groups (and how each represents a distinct cluster of scores)

even if they do not measure exactly the same outcome (see Cohen, 1987, Grissom

and Kim, 2005).

Consider a study that uses two independent groups, and suppose we wish to

compare the means of these two groups. Let �1 and �1 be the true (population) mean

and standard deviation of the first group and let �2 and �2 be the true (population)

mean and standard deviation of the other group. If the two population standard

deviations are the same (as is assumed in most parametric data analysis techniques),

so that �1 5�2 5�, then the standardized mean difference parameter or population

standardized mean difference is defined as

�5
�1 � �2

�
: ð4:17Þ

In the sections that follow, we show how to estimate � from studies that used indepen-

dent groups, and from studies that used pre-post or matched group designs. It is also

possible to estimate � from studies that used other designs (including clustered designs)

but these are not addressed here (see resources at the end of this Part). We make the

common assumption that �1
2 5�2

2, which allows us to pool the estimates of the

standard deviation, and do not address the case where these are assumed to differ

from each other.

Computing d and g from studies that use independent groups

We can estimate the standardized mean difference (�) from studies that used two

independent groups as

d 5
X1 � X2

Swithin

: ð4:18Þ

In the numerator, X1 and X2 are the sample means in the two groups. In the

denominator Swithin is the within-groups standard deviation, pooled across groups,

Swithin 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1ÞS2

1 þ ðn2 � 1ÞS2
2

n1 þ n2 � 2

s
ð4:19Þ

where n1 and n2 are the sample sizes in the two groups, and S1 and S2 are the

standard deviations in the two groups. The reason that we pool the two sample
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estimates of the standard deviation is that even if we assume that the underlying

population standard deviations are the same (that is �1 5�2 5�), it is unlikely that

the sample estimates S1 and S2 will be identical. By pooling the two estimates of

the standard deviation, we obtain a more accurate estimate of their common value.

The sample estimate of the standardized mean difference is often called Cohen’s

d in research synthesis. Some confusion about the terminology has resulted from the

fact that the index �, originally proposed by Cohen as a population parameter for

describing the size of effects for statistical power analysis is also sometimes called d.

In this volume we use the symbol � to denote the effect size parameter and d for the

sample estimate of that parameter.

The variance of d is given (to a very good approximation) by

Vd 5
n1 þ n2

n1n2

þ d2

2ðn1 þ n2Þ
: ð4:20Þ

In this equation the first term on the right of the equals sign reflects uncertainty in the

estimate of the mean difference (the numerator in (4.18)), and the second reflects

uncertainty in the estimate of Swithin (the denominator in (4.18)).

The standard error of d is the square root of Vd,

SEd 5
ffiffiffiffiffi
Vd

p
: ð4:21Þ

It turns out that d has a slight bias, tending to overestimate the absolute value of � in

small samples. This bias can be removed by a simple correction that yields an

unbiased estimate of �, with the unbiased estimate sometimes called Hedges’ g

(Hedges, 1981). To convert from d to Hedges’ g we use a correction factor, which is

called J. Hedges (1981) gives the exact formula for J, but in common practice

researchers use an approximation,

J 5 1� 3

4df � 1
: ð4:22Þ

In this expression, df is the degrees of freedom used to estimate Swithin, which for

two independent groups is n1 þ n2 – 2. This approximation always has error of less

than 0.007 and less than 0.035 percent when df �10 (Hedges, 1981). Then,

g 5 J � d; ð4:23Þ

Vg 5 J2 � Vd; ð4:24Þ

and

SEg 5
ffiffiffiffiffi
Vg

p
: ð4:25Þ

For example, suppose a study has sample means X1 5 103, X2 5 100, sample

standard deviations S1 5 5.5, S2 5 4.5, and sample sizes n1 5 n2 5 50. We would

estimate the pooled-within-groups standard deviation as

Chapter 4: Effect Sizes Based on Means 27



Swithin 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50� 1ð Þ � 5:52 þ 50� 1ð Þ � 4:52

50þ 50� 2

s
5 5:0249:

Then,

d 5
103� 100

5:0249
5 0:5970;

Vd 5
50þ 50

50� 50
þ 0:59702

2 50þ 50ð Þ 5 0:0418;

and

SEd 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0418
p

5 0:2044:

The correction factor (J), Hedges’ g, its variance and standard error are given by

J 5 1� 3

4� 98� 1

� �
5 0:9923;

g 5 0:9923� 0:5970 5 0:5924;

vg 5 0:99232 � 0:0418 5 0:0411;

and

SEg 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0411
p

5 0:2028:

The correction factor (J) is always less than 1.0, and so g will always be less

than d in absolute value, and the variance of g will always be less than the variance

of d. However, J will be very close to 1.0 unless df is very small (say, less

than 10) and so (as in this example) the difference is usually trivial (Hedges, 1981).

Some slightly different expressions for the variance of d (and g) have been given

by different authors and even the same authors at different times. For example, the

denominator of the second term of the variance of d is given here as 2(n1þ n2). This

expression is obtained by one method (assuming the n’s become large with � fixed).

An alternate derivation (assuming n’s become large with
ffiffiffi
n
p

� fixed) leads to a

denominator in the second term that is slightly different, namely 2(n1 þ n2 – 2).

Unless n1 and n2 are very small, these expressions will be almost identical.

Similarly, the expression given here for the variance of g is J2 times the variance

of d, but many authors ignore the J2 term because it is so close to unity in most cases.

Again, while it is preferable to include this correction factor, the inclusion of this

factor is likely to make little practical difference.

Computing d and g from studies that use pre-post scores or matched groups

We can estimate the standardized mean difference (�) from studies that used

matched groups or pre-post scores in one group. The formula for the sample

estimate of d is
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d 5
Ydiff

Swithin

5
Y1 � Y2

Swithin

: ð4:26Þ

This is the same formula as for independent groups (4.18). However, when we are

working with independent groups the natural unit of deviation is the standard

deviation within groups and so this value is typically reported (or easily imputed).

By contrast, when we are working with matched groups, the natural unit of devia-

tion is the standard deviation of the difference scores, and so this is the value that is

likely to be reported. To compute d from the standard deviation of the differences

we need to impute the standard deviation within groups, which would then serve as

the denominator in (4.26).

Concretely, when working with a matched study, the standard deviation within

groups can be imputed from the standard deviation of the difference, using

Swithin 5
Sdiffffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� rÞ
p ; ð4:27Þ

where r is the correlation between pairs of observations (e.g., the pretest-posttest

correlation). Then we can apply (4.26) to compute d. The variance of d is given by

Vd 5
1

n
þ d2

2n

� �
2 1� rð Þ; ð4:28Þ

where n is the number of pairs. The standard error of d is just the square root of Vd,

SEd 5
ffiffiffiffiffi
Vd

p
: ð4:29Þ

Since the correlation between pre- and post-scores is required to impute the standard

deviation within groups from the standard deviation of the difference, we must

assume that this correlation is known or can be estimated with high precision.

Otherwise we may estimate the correlation from related studies, and possibly

perform a sensitivity analysis using a range of plausible correlations.

To compute Hedges’ g and associated statistics we would use formulas (4.22)

through (4.25). The degrees of freedom for computing J is n – 1, where n is the

number of pairs.

For example, suppose that a study has pre-test and post-test sample means

X1 5 103, X2 5 100, sample standard deviation of the difference Sdiff 5 5.5, sample

size n 5 50, and a correlation between pre-test and post-test of r 5 0.7. The standard

deviation within groups is imputed from the standard deviation of the difference by

Swithin 5
5:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1� 0:7ð Þ
p 5 7:1005:

Then d, its variance and standard error are computed as

d 5
103� 100

7:1000
5 0:4225;
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vd 5
1

50
þ 0:42252

2� 50

� �
2 1� 0:7ð Þð Þ5 0:0131;

and
SEd 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0131
p

5 0:1143:

The correction factor J, Hedges’ g, its variance and standard error are given by

J 5 1� 3

4� 49� 1

� �
5 0:9846;

g 5 0:9846� 0:4225 5 0:4160;

Vg 5 0:98462 � 0:0131 5 0:0127;

and

SEg 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0127
p

5 0:1126:

Including different study designs in the same analysis

As we noted earlier, a single systematic review can include studies that used

independent groups and also studies that used matched groups. From a statistical

perspective the effect size (d or g) has the same meaning regardless of the study

design. Therefore, we can compute the effect size and variance from each study

using the appropriate formula, and then include all studies in the same analysis.

While there are no technical barriers to using studies with different designs in the

same analysis, there may be a concern that these studies could differ in substantive

ways as well (see Chapter 40).

For all study designs the direction of the effect (X1 � X2 or X2 � X1) is arbitrary,

except that the researcher must decide on a convention and then apply this con-

sistently. For example, if a positive difference indicates that the treated group did

better than the control group, then this convention must apply for studies that used

independent designs and for studies that used pre-post designs. It must also apply for

all outcome measures. In some cases (for example, if some studies defined outcome

as the number of correct answers while others defined outcome as the number of

mistakes) it will be necessary to reverse the computed sign of the effect size to

ensure that the convention is applied consistently.

RESPONSE RATIOS

In research domains where the outcome is measured on a physical scale (such as

length, area, or mass) and is unlikely to be zero, the ratio of the means in the two

groups might serve as the effect size index. In experimental ecology this effect size

index is called the response ratio (Hedges, Gurevitch, & Curtis, 1999). It is

important to recognize that the response ratio is only meaningful when the outcome
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is measured on a true ratio scale. The response ratio is not meaningful for studies

(such as most social science studies) that measure outcomes such as test scores,

attitude measures, or judgments, since these have no natural scale units and no

natural zero points.

For response ratios, computations are carried out on a log scale (see the discus-

sion under risk ratios, below, for an explanation). We compute the log response ratio

and the standard error of the log response ratio, and use these numbers to perform all

steps in the meta-analysis. Only then do we convert the results back into the original

metric. This is shown schematically in Figure 4.1.

The response ratio is computed as

R 5
X1

X2

ð4:30Þ

where X1 is the mean of group 1 and X2 is the mean of group 2. The log response

ratio is computed as

lnR 5 lnðRÞ5 ln
X1

X2

� �
5 ln X1

� �
� ln X2

� �
: ð4:31Þ

The variance of the log response ratio is approximately

VlnR 5 S2
pooled

1

n1 X1

� �2
þ 1

n2 X2

� �2

 !
; ð4:32Þ

where Spooled is the pooled standard deviation. The approximate standard error is

SE ln R 5
ffiffiffiffiffiffiffiffi
VlnR

p
: ð4:33Þ

Note that we do not compute a variance for the response ratio in its original metric.

Rather, we use the log response ratio and its variance in the analysis to yield

Study A Response ratio Log response ratio

Study B Response ratio Log response ratio

Study C Response ratio Log response ratio

Summary
Response ratio

Summary
Log response ratio

Figure 4.1 Response ratios are analyzed in log units.
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a summary effect, confidence limits, and so on, in log units. We then convert each of

these values back to response ratios using

R 5 expðlnRÞ; ð4:34Þ

LLR 5 expðLLlnRÞ; ð4:35Þ

and

ULR 5 expðULlnRÞ; ð4:36Þ

where LL and UL represent the lower and upper limits, respectively.

For example, suppose that a study has two independent groups with means

X1 5 61.515, X2 5 51.015, pooled within-group standard deviation 19.475, and

sample size n1 5 n2 510.

Then R, its variance and standard error are computed as

R 5
61:515

51:015
5 1:2058;

lnR 5 ln 1:2058ð Þ5 0:1871;

VlnR 5 19:4752 1

10� 61:515ð Þ2
þ 1

10� 51:015ð Þ2

 !
5 0:0246:

and

SElnR 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0246
p

5 0:1581:

SUMMARY POINTS

� The raw mean difference (D) may be used as the effect size when the outcome

scale is either inherently meaningful or well known due to widespread use.

This effect size can only be used when all studies in the analysis used

precisely the same scale.

� The standardized mean difference (d or g) transforms all effect sizes to a

common metric, and thus enables us to include different outcome measures in

the same synthesis. This effect size is often used in primary research as well as

meta-analysis, and therefore will be intuitive to many researchers.

� The response ratio (R) is often used in ecology. This effect size is only

meaningful when the outcome has a natural zero point, but when this condi-

tion holds, it provides a unique perspective on the effect size.

� It is possible to compute an effect size and variance from studies that used two

independent groups, from studies that used matched groups (or pre-post

designs) and from studies that used clustered groups. These effect sizes may

then be included in the same meta-analysis.
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CHAPTER 5

Effect Sizes Based on Binary Data
(2� 2 Tables)

Introduction
Risk ratio
Odds ratio
Risk difference
Choosing an effect size index

INTRODUCTION

For data from a prospective study, such as a randomized trial, that was originally

reported as the number of events and non-events in two groups (the classic 2� 2

table), researchers typically compute a risk ratio, an odds ratio, and/or a risk differ-

ence. This data can be represented as cells A, B, C, and D, as shown in Table 5.1.

For example, assume a study with a sample size of 100 per group. Five patients

died in the treated group, as compared with ten who died in the control group (see

Table 5.2).

Introduction to Meta-Analysis M. Borenstein, L. V. Hedges, J. P. T. Higgins, H. R. Rothstein

� 2009, John Wiley & Sons, Ltd

Table 5.2 Fictional data for a 2� 2 table.

Dead Alive N

Treated 5 95 100
Control 10 90 100

Table 5.1 Nomenclature for 2� 2 table of outcome by treatment.

Events Non-Events N

Treated A B n1
Control C D n2



From these data we might compute a risk ratio, an odds ratio, and/or a risk

difference.

RISK RATIO

The risk ratio is simply the ratio of two risks. Here, the risk of death in the treated

group is 5/100 and the risk of death in the control group is 10/100, so the ratio of the

two risks is 0.50. This index has the advantage of being intuitive, in the sense that

the meaning of a ratio is clear.

For risk ratios, computations are carried out on a log scale. We compute

the log risk ratio, and the standard error of the log risk ratio, and will use

these numbers to perform all steps in the meta-analysis. Only then will we

convert the results back into the original metric. This is shown schematically

in Figure 5.1.

The computational formula for the risk ratio is

RiskRatio ¼ A=n1

C=n2

: ð5:1Þ

The log risk ratio is then

LogRiskRatio ¼ ln ðRiskRatioÞ; ð5:2Þ

with approximate variance

VLogRiskRatio ¼
1

A
� 1

n1

þ 1

C
� 1

n2

; ð5:3Þ

and approximate standard error

Study A 2×2
Table Risk ratio Log risk ratio

Study B 2×2
Table Risk ratio Log risk ratio

Study C 2×2
Table Risk ratio Log risk ratio

Summary
Risk ratio

Summary
Log risk ratio

Figure 5.1 Risk ratios are analyzed in log units.
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SELogRiskRatio ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VLogRiskRatio

p
: ð5:4Þ

Note that we do not compute a variance for the risk ratio in its original metric.

Rather, we use the log risk ratio and its variance in the analysis to yield a summary

effect, confidence limits, and so on, in log units. We then convert each of these

values back to risk ratios using

RiskRatio ¼ expðLogRiskRatioÞ; ð5:5Þ

LLRiskRatio ¼ expðLLLogRiskRatioÞ; ð5:6Þ

and
ULRiskRatio ¼ expðULLogRiskRatioÞ ð5:7Þ

where LL and UL represent the lower and upper limits, respectively.

In the running example the risk ratio is

RiskRatio ¼ 5=100

10=100
¼ 0:5000:

The log is
LogRiskRatio ¼ ln ð0:5000Þ ¼ �0:6932;

with variance

VLogRiskRatio ¼
1

5
� 1

100
þ 1

10
� 1

100
¼ 0:2800;

and standard error

SELogRiskRatio ¼
ffiffiffiffiffiffiffiffiffiffiffi
0:280
p

¼ 0:5292:

Note 1. The log transformation is needed to maintain symmetry in the analysis.

Assume that one study reports that the risk is twice as high in Group A while another

reports that it is twice as high in Group B. Assuming equal weights, these studies

should balance each other, with a combined effect showing equal risks (a risk ratio of

1.0). However, on the ratio scale these correspond to risk ratios of 0.50 and 2.00, which

would yield a mean of 1.25. By working with log values we can avoid this problem.

In log units the two estimates are �0.693 and þ0.693, which yield a mean of 0.00.

We convert this back to a risk ratio of 1.00, which is the correct value for this data.

Note 2. Although we defined the risk ratio in this example as

RiskRatio ¼ 5=100

10=100
¼ 0:5000

(which gives the risk ratio of dying) we could alternatively have focused on the risk

of staying alive, given by

RiskRatio ¼ 95=100

90=100
¼ 1:0556:

The ‘risk’ of staying alive is not the inverse of the risk of dying (that is, 1.056 is not the

inverse of 0.50), and therefore this should be considered a different measure of effect size.
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ODDS RATIO

Where the risk ratio is the ratio of two risks, the odds ratio is the ratio of two

odds. Here, the odds of death in the treated group would be 5/95, or

0.0526 (since probability of death in the treated group is 5/100 and the

probability of life is 95/100), while the odds of death in the control group would

be 10/90, or 0.1111. The ratio of the two odds would then be 0.0526/0.1111, or

0.4737.

Many people find this effect size measure less intuitive than the risk ratio, but

the odds ratio has statistical properties that often make it the best choice for a

meta-analysis. When the risk of the event is low, the odds ratio will be similar to the

risk ratio.

For odds ratios, computations are carried out on a log scale (for the same reason

as for risk ratios). We compute the log odds ratio, and the standard error of the log

odds ratio, and will use these numbers to perform all steps in the meta-analysis.

Only then will we convert the results back into the original metric. This is shown

schematically in Figure 5.2.

The computational formula for the odds ratio is

OddsRatio ¼ AD

BC
: ð5:8Þ

The log odds ratio is then

LogOddsRatio ¼ ln OddsRatioð Þ; ð5:9Þ

with approximate variance

VLogOddsRatio ¼
1

A
þ 1

B
þ 1

C
þ 1

D
ð5:10Þ

Study A 2×2
Table Odds ratio Log odds ratio

Study B 2×2
Table Odds ratio Log odds ratio

Study C 2×2
Table Odds ratio Log odds ratio

Summary
Odds ratio

Summary
Log odds ratio

Figure 5.2 Odds ratios are analyzed in log units.
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and approximate standard error

SELogOddsRatio ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VLogOddsRatio

p
: ð5:11Þ

Note that we do not compute a variance for the odds ratio. Rather, the log odds ratio

and its variance are used in the analysis to yield a summary effect, confidence limits,

and so on, in log units. We then convert each of these values back to odds ratios

using

OddsRatio ¼ expðLogOddsRatioÞ; ð5:12Þ

LLOddsRatio ¼ expðLLLogOddsRatioÞ; ð5:13Þ

and

ULOddsRatio ¼ expðULLogOddsRatioÞ; ð5:14Þ

where LL and UL represent the lower and upper limits, respectively.

In the running example

OddsRatio ¼ 5� 90

95� 10
¼ 0:4737;

and

LogOddsRatio ¼ ln 0:4737ð Þ ¼ �0:7472;

with variance

VLogOddsRatio ¼
1

5
þ 1

95
þ 1

10
þ 1

90
¼ 0:3216

and standard error

SELogOddsRatio ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:3216
p

¼ 0:5671:

Note. When working with the odds ratio or risk ratio we can place either the Treated

group or the Control group in the numerator, as long we apply this consistently across

all studies. If we put the Treated group in the denominator the log odds ratio would

change signs (from �0.7472 to þ 0.7472) and the odds ratio would change to its

inverse (from 0.4737 to 2.1110). The same thing happens to the odds ratio if we swap

Dead and Alive within each group. However, this is not the case for the risk ratio.

RISK DIFFERENCE

The risk difference is the difference between two risks. Here, the risk in the treated

group is 0.05 and the risk in the control group is 0.10, so the risk difference is�0.05.

Unlike the case for risk ratios and for odds ratios, computations for risk differ-

ences are carried out in raw units rather than log units.

The risk difference is defined as

RiskDiff ¼ A

n1

� �
� C

n2

� �
ð5:15Þ
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with approximate variance

VRiskDiff ¼
AB

n3
1

þ CD

n3
2

ð5:16Þ

and approximate standard error

SERiskDiff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VRiskDiff

p
: ð5:17Þ

In the running example

RiskDiff ¼ 5

100

� �
� 10

100

� �
¼ �0:0500

with variance

VRiskDiff ¼
5 � 95

1003
þ 10� 90

1003
¼ 0:0014

and standard error

SERiskDiff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00138
p

¼ 0:0371:

CHOOSING AN EFFECT SIZE INDEX

In selecting among the risk ratio, odds ratio, and risk difference the researcher needs

to consider both substantive and technical factors.

The risk ratio and odds ratio are relative measures, and therefore tend to be

relatively insensitive to differences in baseline events. By contrast, the risk

difference is an absolute measure and as such is very sensitive to the baseline

risk. If we wanted to test a compound and believed that it reduced the risk of an

event by 20 % regardless of the baseline risk, then by using a ratio index we would

expect to see the same effect size across studies even if the baseline risk varied

from study to study. The risk difference, by contrast, would be higher in studies

with a higher base rate.

At the same time, if we wanted to convey the clinical impact of the treatment, the

risk difference might be the better measure. Suppose we perform a meta-analysis to

assess the risk of adverse events for treated versus control groups. The risk is 1/1000

for treated patients versus 1/2000 for control patients, for a risk ratio of 2.00. At the

same time, the risk difference is 0.0010 versus 0.0005 for a risk difference of

0.0005. These two numbers (2.00 and 0.0005) are both correct, but measure

different things.

Because the ratios are less sensitive to baseline risk while the risk difference is

sometimes more clinically meaningful, some suggest using the risk ratio (or odds

ratio) to perform the meta-analysis and compute a summary risk (or odds) ratio.

Then, they can use this to predict the risk difference for any given baseline risk.
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SUMMARY POINTS

� We can compute the risk of an event (such as the risk of death) in each group

(for example, treated versus control). The ratio of these risks then serves as an

effect size (the risk ratio).

� We can compute the odds of an event (such as ratio of dying to living) in each

group (for example, treated versus control). The ratio of these odds then

serves as the odds ratio.

� We can compute the risk of an event (such as the risk of death) in each group

(for example, treated versus control). The difference in these risks then serves

as an effect size (the risk difference).

� To work with the risk ratio or odds ratio we transform all values to log values,

perform the analyses, and then convert the results back to ratio values for

presentation. To work with the risk difference we work with the raw values.
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CHAPTER 6

Effect Sizes Based on Correlations

Introduction
Computing r
Other approaches

INTRODUCTION

For studies that report a correlation between two continuous variables, the correlation

coefficient itself can serve as the effect size index. The correlation is an intuitive

measure that, like �, has been standardized to take account of different metrics in the

original scales. The population parameter is denoted by � (the Greek letter rho).

COMPUTING r

The estimate of the correlation parameter � is simply the sample correlation

coefficient, r. The variance of r is approximately

Vr ¼
1� r2ð Þ2

n� 1
; ð6:1Þ

where n is the sample size.

Most meta-analysts do not perform syntheses on the correlation coefficient itself

because the variance depends strongly on the correlation. Rather, the correlation is

converted to the Fisher’s z scale (not to be confused with the z-score used with

significance tests), and all analyses are performed using the transformed values. The

results, such as the summary effect and its confidence interval, would then be

converted back to correlations for presentation. This is shown schematically in

Figure 6.1, and is analogous to the procedure used with odds ratios or risk ratios

where all analyses are performed using log transformed values, and then converted

back to the original metric.

Introduction to Meta-Analysis.  Michael Borenstein, L. V. Hedges, J. P. T. Higgins and H. R. Rothstein  
© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-05724-7



The transformation from sample correlation r to Fisher’s z is given by

z ¼ 0:5� ln
1þ r

1� r

� �
: ð6:2Þ

The variance of z (to an excellent approximation) is

Vz ¼
1

n� 3
; ð6:3Þ

and the standard error is

SEz ¼
ffiffiffiffiffi
Vz

p
: ð6:4Þ

When working with Fisher’s z, we do not use the variance for the correlation.

Rather, the Fisher’s z score and its variance are used in the analysis, which yield a

summary effect, confidence limits, and so on, in the Fisher’s z metric. We then

convert each of these values back to correlation units using

r ¼ e2z � 1

e2z þ 1
: ð6:5Þ

For example, if a study reports a correlation of 0.50 with a sample size of 100, we

would compute

z ¼ 0:5� ln
1þ 0:5

1� 0:5

� �
¼ 0:5493;

Vz ¼
1

100� 3
¼ 0:0103;

and

SEz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0103
p

¼ 0:1015:

Study A Correlation Fisher’s z

Study B Correlation Fisher’s z

Study C Correlation Fisher’s z

Summary
Correlation

Summary
Fisher’s z

Figure 6.1 Correlations are analyzed in Fisher’s z units.
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To convert the Fisher’s z value back to a correlation, we would use

r ¼ eð2�0:5493 Þ � 1

eð2�0:5493 Þ þ 1
¼ 0:5000 :

OTHER APPROACHES

Hunter and Schmidt (2004) advocate an approach for working with correlations that

differs in several ways from the one presented here. This approach is discussed in

Chapter 38.

SUMMARY POINTS

� When studies report data as correlations, we usually use the correlation

coefficient itself as the effect size. We transform the correlation using the

Fisher’s z transformation and perform the analysis using this index. Then, we

convert the summary values back to correlations for presentation.
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CHAPTER 7

Converting Among Effect Sizes

Introduction
Converting from the log odds ratio to d
Converting from d to the log odds ratio
Converting from r to d
Converting from d to r

INTRODUCTION

Earlier in this Part we discussed the case where different study designs were used

to compute the same effect size. For example, studies that used independent groups

and studies that used matched groups were both used to yield estimates of the

standardized mean difference, g. There is no problem in combining these estimates

in a meta-analysis since the effect size has the same meaning in all studies.

Consider, however, the case where some studies report a difference in means,

which is used to compute a standardized mean difference. Others report a difference

in proportions which is used to compute an odds ratio. And others report a correla-

tion. All the studies address the same broad question, and we want to include them

in one meta-analysis. Unlike the earlier case, we are now dealing with different

indices, and we need to convert them to a common index before we can proceed.

The question of whether or not it is appropriate to combine effect sizes from

studies that used different metrics must be considered on a case by case basis. The

key issue is that it only makes sense to compute a summary effect from studies that

we judge to be comparable in relevant ways. If we would be comfortable combining

these studies if they had used the same metric, then the fact that they used different

metrics should not be an impediment.

For example, suppose that several randomized controlled trials start with the

same measure, on a continuous scale, but some report the outcome as a mean

and others dichotomize the outcome and report it as success or failure. In this

case, it may be highly appropriate to transform the standardized mean differences
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and the odds ratios to a common metric and then combine them across studies.

By contrast, observational studies that report correlations may be substantially

different from observational studies that report odds ratios. In this case, even if

there is no technical barrier to converting the effects to a common metric, it may be

a bad idea from a substantive perspective.

In this chapter we present formulas for converting between an odds ratio and d, or

between d and r. By combining formulas it is also possible to convert from an odds

ratio, via d, to r (see Figure 7.1). In every case the formula for converting the effect

size is accompanied by a formula to convert the variance.

When we convert between different measures we make certain assumptions

about the nature of the underlying traits or effects. Even if these assumptions do

not hold exactly, the decision to use these conversions is often better than the

alternative, which is to simply omit the studies that happened to use an alternate

metric. This would involve loss of information, and possibly the systematic loss of

information, resulting in a biased sample of studies. A sensitivity analysis to

compare the meta-analysis results with and without the converted studies would

be important.

Figure 7.1 outlines the mechanism for incorporating multiple kinds of data in the

same meta-analysis. First, each study is used to compute an effect size and variance

of its native index, the log odds ratio for binary data, d for continuous data, and r for

correlational data. Then, we convert all of these indices to a common index, which

would be either the log odds ratio, d, or r. If the final index is d, we can move from

there to Hedges’ g. This common index and its variance are then used in the

analysis.

Binary data Continuous data Correlational data

Log odds ratio
Standardized

Mean Difference
(Cohen’s d )

Fisher’s z

Bias-corrected
Standardized

Mean Difference
(Hedges’ g)

Figure 7.1 Converting among effect sizes.
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CONVERTING FROM THE LOG ODDS RATIO TO d

We can convert from a log odds ratio (LogOddsRatio) to the standardized mean

difference d using

d 5 LogOddsRatio�
ffiffiffi
3
p

p
; ð7:1Þ

where p is the mathematical constant (approximately 3.14159). The variance of d

would then be

Vd 5 VLogOddsRatio �
3

p2
; ð7:2Þ

where VLogOddsRatio is the variance of the log odds ratio. This method was originally

proposed by Hasselblad and Hedges (1995) but variations have been proposed

(see Sanchez-Meca, Marin-Martinez, & Chacon-Moscoso, 2003; Whitehead,

2002). It assumes that an underlying continuous trait exists and has a logistic

distribution (which is similar to a normal distribution) in each group. In practice,

it will be difficult to test this assumption.

For example, if the log odds ratio were LogOddsRatio 5 0.9069 with a variance

of VLogOddsRatio 5 0.0676, then

d 5 0:9069�
ffiffiffi
3
p

3:1416
5 0:5000

with variance

Vd 5 0:0676� 3

3:14162
5 0:0205:

CONVERTING FROM d to the log odds ratio

We can convert from the standardized mean difference d to the log odds ratio

(LogOddsRatio) using

LogOddsRatio 5 d
pffiffiffi
3
p ; ð7:3Þ

where p is the mathematical constant (approximately 3.14159). The variance of

LogOddsRatio would then be

VLogOddsRatio 5 Vd

p2

3
: ð7:4Þ

For example, if d 5 0.5000 and Vd 5 0.0205 then

LogOddsRatio 5 0:5000� 3:1416ffiffiffi
3
p 5 0:9069;
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and

VLogOddsRatio 5 0:0205� 3:14162

3
5 0:0676:

To employ this transformation we assume that the continuous data have the logistic

distribution.

CONVERTING FROM r TO d

We convert from a correlation (r) to a standardized mean difference (d) using

d 5
2rffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p : ð7:5Þ

The variance of d computed in this way (converted from r) is

Vd 5
4Vr

1� r2ð Þ3
: ð7:6Þ

For example, if r 5 0.50 and Vr 5 0.0058, then

d 5
2� 0:50ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:502
p 5 1:1547

and the variance of d is

Vd 5
4� 0:0058

1� 0:502
� �3

5 0:0550:

In applying this conversion we assume that the continuous data used to compute r

has a bivariate normal distribution and that the two groups are created by dichot-

omizing one of the two variables.

CONVERTING FROM d TO r

We can convert from a standardized mean difference (d) to a correlation (r) using

r 5
dffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ a
p ð7:7Þ

where a is a correction factor for cases where n1 6¼ n2,

a 5
ðn1 þ n2 Þ2

n1n2

: ð7:8Þ

The correction factor (a) depends on the ratio of n1 to n2, rather than the

absolute values of these numbers. Therefore, if n1 and n2 are not known precisely,

use n1 5 n2, which will yield a 5 4. The variance of r computed in this way

(converted from d) is
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Vr 5
a2Vd

d2 þ að Þ3
: ð7:9Þ

For example, if n15 n2, d 5 1.1547 and vd 5 0.0550, then

r 5
1:1547ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:15472 þ 4
p 5 0:5000

and the variance of r converted from d will be

Vr 5
42 � 0:0550

1:15472 þ 4
� �3

5 0:0058:

In applying this conversion assume that a continuous variable was dichotomized to

create the treatment and control groups.

When we transform between Fisher’s z and d we are making assumptions about

the independent variable only. When we transform between the log odds ratio and d

we are making assumptions about the dependent variable only. As such, the two sets

of assumptions are independent of each other, and one has no implications for the

validity of the other. Therefore, we can apply both sets of assumptions and trans-

form from Fisher’s z through d to the log odds ratio, as well as the reverse.

SUMMARY POINTS

� If all studies in the analysis are based on the same kind of data (means, binary,

or correlational), the researcher should select an effect size based on that kind

of data.

� When some studies use means, others use binary data, and others use correla-

tional data, we can apply formulas to convert among effect sizes.

� Studies that used different measures may differ from each other in substantive

ways, and we need to consider this possibility when deciding if it makes sense

to include the various studies in the same analysis.
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CHAPTER 8

Factors that Affect Precision

Introduction
Factors that affect precision
Sample size
Study design

INTRODUCTION

In the preceding chapter we showed how to compute the variance for specific effect

sizes such as the standardized mean difference or a log risk ratio. Our goal in this

chapter is to provide some context for those formulas.

We use the term precision as a general term to encompass three formal statistics,

the variance, standard error, and confidence interval. These are all related to each

other, so when we discuss the impact of a factor on precision, this translates into an

impact on all three. In this chapter we outline the relationship between these three

indices of precision. Then, we discuss two factors that affect precision and make

some studies more precise than others.

Variance, standard error, and confidence intervals

The variance is a measure of the mean squared deviation from the mean effect. For

an effect size Y (used generically), the variance would be denoted simply as

VY ; ð8:1Þ

The computation of the variance is different for every effect size index (some

formulas were presented in the preceding chapters).

The variance has properties that make it useful for some statistical computations,

but because its metric is based on squared values it is not an intuitive index. A more

accessible index is the standard error, which is on the same scale as the effect size
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itself. If Y is the effect size and VY is the variance of Y, then the standard error of Y

(SEY) is given by

SEY 5
ffiffiffiffiffiffi
VY

p
: ð8:2Þ

If we assume that the effect size is normally distributed then we can compute a 95%

confidence interval using

LLY 5 Y � 1:96� SEY ð8:3Þ

and

ULY 5 Y þ 1:96� SEY : ð8:4Þ

In these equations 1.96 is the Z-value corresponding to confidence limits of 95%

(allowing for 2.5% error at either end of the distribution). We can also compute a

test statistic Z as

ZY 5
Y

SEY

: ð8:5Þ

There is a perfect relationship between the p-value for Z and the confidence interval,

such that the p-value will be less than 0.05 if and only if the confidence interval does

not include the null value.

FACTORS THAT AFFECT PRECISION

Some of the factors that affect precision are unique to each effect size index, as

explained in the preceding chapters. They are also unique to each study since each

study has inherent factors, such as the homogeneity of the sample, which affect

precision. Beyond these unique factors, however, are two factors that have an

important and predictable impact on precision. One is the size of the sample, and

the other is the study design (whether the study used paired groups, independent

groups, or clustered groups). The impact of these two factors is explained here.

SAMPLE SIZE

A dominant factor in precision is the sample size, with larger samples yielding more

precise estimates than smaller samples.

For example, consider the three studies in Table 8.1. These studies compared the

means in two independent groups, and we computed the standardized mean

Table 8.1 Impact of sample size on variance.

Study Design N per Group Standard Error Variance

A Independent 100 0.141 0.020
B Independent 200 0.100 0.010
C Independent 400 0.071 0.005
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difference (d), which is 0.0 in this example. The sample sizes in the three studies

(A, B, C) are 100, 200, and 400 per group, respectively, and the variances are 0.020,

0.010, and 0.005. In other words, as the sample size increases by a factor of 4

(compare studies A and C) the variance will decrease by a factor of 4 and the

standard error will decrease by a factor of 2 (that is, by the square root of 4).

Note. In this example we assume that d 5 0.0 which allows us to focus on the

relationship between sample size and variance. When d is nonzero, d has an impact

on the variance (though this impact is typically small).

The same information is presented graphically in Figure 8.1, where each study is

represented by a box and bounded by a confidence interval. In this figure,

� The area of a box is proportional to the inverse of that study’s variance.

� Any side on a box is proportional to the inverse of that study’s standard error.

� The confidence interval for each box is proportional to that study’s standard error.

Later, we will discuss how weights are assigned to each study in the meta-analysis.

Under one scheme weights are inversely proportional to the variance, and study C

would be assigned four times as much weight as study A.

STUDY DESIGN

In the preceding example (where we compared different sample sizes) we assumed

that the studies used two independent groups. Here, we consider what happens if we

use a comparable sample size but an alternate study design.

One alternate design is matched pairs, where each person in the treated group is

matched with a similar person in the control group (say, a sibling, or a person at the same

disease stage). This design allows us to work with differences within these pairs (rather

than differences between groups) which can reduce the error term and thus increase the

precision of the estimate. The impact on precision depends on the correlation between

(for example) siblings, with a higher correlation yielding greater precision.

In Table 8.2 line D (Independent) shows the variance for a study with 100

subjects per group, and is identical to Study A in the prior table. The three lines

N per
group

Standard
Error Variance

N  = 100 0.141 0.020

N  = 200 0.100 0.010

N  = 400 0.071 0.005

–0.50 0.00–0.25 0.25 0.50

Impact of Sample Size on Variance

Standard difference in means (d  )
and 95% confidence interval

Figure 8.1 Impact of sample size on variance.
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below this are based on paired (or matched groups) with the same sample size (100

pairs). If the pre-post correlation was 0.00 (line E) then the matching would have

no impact and the variance would remain at 0.02, but if the correlation was 0.50

(line F) or 0.75 (line G), then the variance would drop to 0.01 or 0.005.

Another design is the clustered trial, where an entire cluster of participants is

assigned to one condition or another. For example, the design might call for students

within classrooms, where an entire classroom is assigned to a single condition. Just as

the use of matched pairs served to decrease the error term, the use of clusters serves to

increase the error term, and a study that used clustered groups would typically have a

larger variance than one with two independent groups. In clustered trials the intraclass

correlation reflects the difference between clusters. If the intraclass correlation was 0.0

(line C) then the clustering would have no impact and the variance would remain at

0.02, but if the intraclass correlation was 0.05 (line B) or 0.10 (line A) the variance

would increase to 0.03 or 0.04 (assuming 10 clusters of 10 subjects per group).

Again, the same information is presented graphically in Figure 8.2 where the larger

blocks (and narrower confidence intervals) represent studies with more precise estimates.

Table 8.2 Impact of study design on variance.

Design N per group Intraclass Correlation Correlation Standard Error Variance

A Cluster 10 x 10 0.10 0.205 0.042
B Cluster 10 x 10 0.05 0.175 0.031
C Cluster 10 x 10 0.00 0.141 0.020
D Independent 100 0.141 0.020
E Paired 100 pairs 0.00 0.141 0.020
F Paired 100 pairs 0.50 0.100 0.010
G Paired 100 pairs 0.75 0.071 0.005

Study Design Variance

Cluster ρ = 0.10

Impact of Study Design on Variance

Standard difference in means (d  )
and 95% confidence interval

Cluster ρ = 0.05

Cluster ρ = 0.00

Independent

Standard
Error

Paired ρ = 0.00

Paired ρ = 0.50

Paired ρ = 0.75

0.205

0.175

0.141

0.141

0.141

0.100

0.071

0.042

0.031

0.020

0.020

0.020

0.010

0.005

–0.50 0.00–0.25 0.25 0.50

Figure 8.2 Impact of study design on variance.
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Concluding remarks

The information conveyed by precision is critically important in both primary

studies and meta-analysis.

When we are working with individual studies the precision defines a range of

likely values for the true effect. The precision, usually reported as a standard error or

confidence interval, tells us how much confidence we can have in the effect size. To

report that the effect size is 0.50 plus/minus 0.10 is very different than to report an

effect size of 0.50 plus/minus 0.50.

As we turn our attention from the single study to the synthesis, our perspective

shifts somewhat. A person performing a narrative review might look at a very

precise study and decide to assign that study substantial weight in the analysis. This

is formalized in the meta-analysis, with more weight being assigned to the more

precise studies, as discussed in Part 4.

SUMMARY POINTS

� The precision with which we estimate an effect size can be expressed as a

standard error or confidence interval (in the same metric as the effect size

itself) or as a variance (in a squared metric).

� The precision is driven primarily by the sample size, with larger studies

yielding more precise estimates of the effect size.

� Other factors affecting precision include the study design, with matched

groups yielding more precise estimates (as compared with independent

groups) and clustered groups yielding less precise estimates.

� In addition to these general factors, there are unique factors that affect the

precision for each effect size index.

� Studies that yield more precise estimates of the effect size carry more

information and are assigned more weight in the meta-analysis.
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CHAPTER 9

Concluding Remarks

While many meta-analyses use one of the effect sizes presented above, other

options exist. Researchers working in medicine sometimes use the hazard ratio

(based on the time to event in two groups) or the rate ratio (based on events by time

in two groups). Nor are we limited to indices that look at the impact of a treatment or

the relationship between two variables. Some indices simply report the mean, risk,

or rate in a single group. For example, we could perform a meta-analysis of studies

that had estimated the prevalence of HIV infection in different countries.

As we move on to formulas for meta-analysis we will be using one or another

effect size as an example in each chapter. However, it is important to understand

that once we have computed an effect size and variance for each study, the formulas

for computing a summary effect, for assessing heterogeneity, and so on, are the

same regardless of whether the effect size is a raw difference in means, a standar-

dized difference in means, a log risk ratio, or another index.
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CHAPTER 10

Overview

Introduction
Nomenclature

INTRODUCTION

Most meta-analyses are based on one of two statistical models, the fixed-effect

model or the random-effects model.

Under the fixed-effect model we assume that there is one true effect size (hence

the term fixed effect) which underlies all the studies in the analysis, and that all

differences in observed effects are due to sampling error. While we follow the

practice of calling this a fixed-effect model, a more descriptive term would be a

common-effect model. In either case, we use the singular (effect) since there is only

one true effect.

By contrast, under the random-effects model we allow that the true effect could

vary from study to study. For example, the effect size might be higher (or lower) in

studies where the participants are older, or more educated, or healthier than in others,

or when a more intensive variant of an intervention is used, and so on. Because studies

will differ in the mixes of participants and in the implementations of interventions,

among other reasons, there may be different effect sizes underlying different studies.

If it were possible to perform an infinite number of studies (based on the inclusion

criteria for our analysis), the true effect sizes for these studies would be distributed

about some mean. The effect sizes in the studies that actually were performed are

assumed to represent a random sample of these effect sizes (hence the term random

effects). Here, we use the plural (effects) since there is an array of true effects.

In the chapters that follow we discuss the two models and show how to compute a

summary effect using each one. Because the computations for a summary effect are

not always intuitive, it helps to keep in mind that the summary effect is nothing

more than the mean of the effect sizes, with more weight assigned to the more

precise studies. We need to consider what we mean by the more precise studies and
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how this translates into a study weight (this depends on the model), but not lose

track of the fact that we are simply computing a weighted mean.

NOMENCLATURE

Throughout this Part we distinguish between a true effect size and an observed

effect size. A study’s true effect size is the effect size in the underlying population,

and is the effect size that we would observe if the study had an infinitely large

sample size (and therefore no sampling error). A study’s observed effect size is the

effect size that is actually observed.

In the schematics we use different symbols to distinguish between true effects and

observed effects. For individual studies we use a circle for the former and a square

for the latter (see Figure 10.1). For summary effects we use a triangle for the former

and a diamond for the latter.

Worked examples

In meta-analysis the same formulas apply regardless of the effect size being used.

To allow the reader to work with an effect size of their choosing, we have separated

the formulas (which are presented in the following chapters) from the worked

examples (which are presented in Chapter 14). There, we provide a worked example

for the standardized mean difference, one for the odds ratio, and one for

correlations.

The reader is encouraged to select one of the worked examples and follow the

details of the computations while studying the formulas. The three datasets and all

computations are available as Excel spreadsheets on the book’s web site.

True
effect

Observed
effect

Study

Combined

Figure 10.1 Symbols for true and observed effects.
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CHAPTER 11

Fixed-Effect Model

Introduction
The true effect size
Impact of sampling error
Performing a fixed-effect meta-analysis

INTRODUCTION

In this chapter we introduce the fixed-effect model. We discuss the assumptions of

this model, and show how these are reflected in the formulas used to compute a

summary effect, and in the meaning of the summary effect.

THE TRUE EFFECT SIZE

Under the fixed-effect model we assume that all studies in the meta-analysis share a

common (true) effect size. Put another way, all factors that could influence the

effect size are the same in all the studies, and therefore the true effect size is the

same (hence the label fixed) in all the studies. We denote the true (unknown) effect

size by theta (�)
In Figure 11.1 the true overall effect size is 0.60 and this effect (represented by a

triangle) is shown at the bottom. The true effect for each study is represented by a

circle. Under the definition of a fixed-effect model the true effect size for each study

must also be 0.60, and so these circles are aligned directly above the triangle.

IMPACT OF SAMPLING ERROR

Since all studies share the same true effect, it follows that the observed effect size

varies from one study to the next only because of the random error inherent in each

study. If each study had an infinite sample size the sampling error would be zero and

the observed effect for each study would be the same as the true effect. If we were to

plot the observed effects rather than the true effects, the observed effects would

exactly coincide with the true effects.
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In practice, of course, the sample size in each study is not infinite, and so there is

sampling error and the effect observed in the study is not the same as the true effect.

In Figure 11.2 the true effect for each study is still 0.60 (as depicted by the circles)

but the observed effect (depicted by the squares) differs from one study to the next.

In Study 1 the sampling error (e1) is�0.20, which yields an observed effect (Y1) of

Y1 ¼ 0:60� 0:20 ¼ 0:40:

In Study 2 the sampling error (e2) is 0.10, which yields an observed effect (Y2) of

Y2 ¼ 0:60þ 0:10 ¼ 0:70:

In Study 3 the sampling error (e3) is �0.10, which yields an observed effect (Y3) of

Y3 ¼ 0:60� 0:10 ¼ 0:50:

More generally, the observed effect Yi for any study is given by the population mean

plus the sampling error in that study. That is,

Yi ¼ �þ ei: ð11:1Þ

Study 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Study 2

Study 3

θ

Figure 11.1 Fixed-effect model – true effects.

θ

Study 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Study 2

Study 3
ε3

ε2

ε1

Figure 11.2 Fixed-effect model – true effects and sampling error.
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While the error in any given study is random, we can estimate the sampling

distribution of the errors. In Figure 11.3 we have placed a normal curve about the

true effect size for each study, with the width of the curve being based on the

variance in that study. In Study 1 the sample size was small, the variance large,

and the observed effect is likely to fall anywhere in the relatively wide range of

0.20 to 1.00. By contrast, in Study 2 the sample size was relatively large, the

variance is small, and the observed effect is likely to fall in the relatively narrow

range of 0.40 to 0.80. (The width of the normal curve is based on the square root of

the variance, or standard error).

PERFORMING A FIXED-EFFECT META-ANALYSIS

In an actual meta-analysis, of course, rather than starting with the population effect

and making projections about the observed effects, we work backwards, starting

with the observed effects and trying to estimate the population effect. In order to

obtain the most precise estimate of the population effect (to minimize the variance)

we compute a weighted mean, where the weight assigned to each study is the

inverse of that study’s variance. Concretely, the weight assigned to each study in

a fixed-effect meta-analysis is

Wi ¼
1

VYi

; ð11:2Þ

where VYi
is the within-study variance for study (i). The weighted mean (M) is then

computed as

Study 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Study 2

Study 3

θ

Figure 11.3 Fixed-effect model – distribution of sampling error.
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M ¼

Xk

i¼1

WiYi

Xk

i¼1

Wi

; ð11:3Þ

that is, the sum of the products WiYi (effect size multiplied by weight) divided by the

sum of the weights.

The variance of the summary effect is estimated as the reciprocal of the sum of

the weights, or

VM ¼
1Xk

i¼1

Wi

; ð11:4Þ

and the estimated standard error of the summary effect is then the square root of the

variance,

SEM ¼
ffiffiffiffiffiffiffi
VM

p
: ð11:5Þ

Then, 95% lower and upper limits for the summary effect are estimated as

LLM ¼ M � 1:96� SEM ð11:6Þ

and
ULM ¼ M þ 1:96� SEM: ð11:7Þ

Finally, a Z-value to test the null hypothesis that the common true effect � is zero

can be computed using

Z ¼ M

SEM

: ð11:8Þ

For a one-tailed test the p-value is given by

p ¼ 1� F �jZjð Þ; ð11:9Þ

where we choose ‘þ’ if the difference is in the expected direction and ‘–’ otherwise,

and for a two-tailed test by

p ¼ 2 1� ðF jZjð ÞÞ
h i

; ð11:10Þ

where F(Z) is the standard normal cumulative distribution. This function is tabled

in many introductory statistics books, and is implemented in Excel as the function

¼NORMSDIST(Z).

Illustrative example

We suggest that you turn to a worked example for the fixed-effect model before

proceeding to the random-effects model. A worked example for the standardized
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mean difference (Hedges’ g) is on page 87, a worked example for the odds ratio is on

page 92, and a worked example for correlations is on page 97.

SUMMARY POINTS

� Under the fixed-effect model all studies in the analysis share a common true

effect.

� The summary effect is our estimate of this common effect size, and the null

hypothesis is that this common effect is zero (for a difference) or one (for a

ratio).

� All observed dispersion reflects sampling error, and study weights are

assigned with the goal of minimizing this within-study error.
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CHAPTER 12

Random-Effects Model

Introduction
The true effect sizes
Impact of sampling error
Performing a random-effects meta-analysis

INTRODUCTION

In this chapter we introduce the random-effects model. We discuss the assumptions

of this model, and show how these are reflected in the formulas used to compute a

summary effect, and in the meaning of the summary effect.

THE TRUE EFFECT SIZES

The fixed-effect model, discussed above, starts with the assumption that the true

effect size is the same in all studies. However, in many systematic reviews this

assumption is implausible. When we decide to incorporate a group of studies in a

meta-analysis, we assume that the studies have enough in common that it makes

sense to synthesize the information, but there is generally no reason to assume that

they are identical in the sense that the true effect size is exactly the same in all the

studies.

For example, suppose that we are working with studies that compare the propor-

tion of patients developing a disease in two groups (vaccinated versus placebo). If

the treatment works we would expect the effect size (say, the risk ratio) to be similar

but not identical across studies. The effect size might be higher (or lower) when the

participants are older, or more educated, or healthier than others, or when a more

intensive variant of an intervention is used, and so on. Because studies will differ in

the mixes of participants and in the implementations of interventions, among other

reasons, there may be different effect sizes underlying different studies.
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Or, suppose that we are working with studies that assess the impact of an

educational intervention. The magnitude of the impact might vary depending on

the other resources available to the children, the class size, the age, and other

factors, which are likely to vary from study to study.

We might not have assessed these covariates in each study. Indeed, we might

not even know what covariates actually are related to the size of the effect.

Nevertheless, logic dictates that such factors do exist and will lead to variations in

the magnitude of the effect.

One way to address this variation across studies is to perform a random-effects

meta-analysis. In a random-effects meta-analysis we usually assume that the true

effects are normally distributed. For example, in Figure 12.1 the mean of all true

effect sizes is 0.60 but the individual effect sizes are distributed about this mean, as

indicated by the normal curve. The width of the curve suggests that most of the true

effects fall in the range of 0.50 to 0.70.

IMPACT OF SAMPLING ERROR

Suppose that our meta-analysis includes three studies drawn from the distribution of

studies depicted by the normal curve, and that the true effects (denoted �1, �2, and

�3) in these studies happen to be 0.50, 0.55 and 0.65 (see Figure 12.2).

If each study had an infinite sample size the sampling error would be zero and the

observed effect for each study would be the same as the true effect for that study.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
μ

Figure 12.1 Random-effects model – distribution of true effects.

Study 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Study 2

Study 3

μ

Figure 12.2 Random-effects model – true effects.
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If we were to plot the observed effects rather than the true effects, the observed

effects would exactly coincide with the true effects.

Of course, the sample size inany study is not infinite and therefore the sampling error

is not zero. If the true effect size for a study is �i, then the observed effect for that study

will be less than or greater than �i because of sampling error. For example, consider

Study 3 in Figure 12.2. This study is the subject of Figure 12.3, where we consider the

factors that control the observed effect. The true effect for Study 3 is 0.50 but the

sampling error for this study is –0.10, and the observed effect for this study is 0.40.

This figure also highlights the fact that the distance between the overall mean and

the observed effect in any given study consists of two distinct parts: true variation in

effect sizes (�i) and sampling error (ei). In Study 3 the total distance from � to Y3 is

�0.20. The distance from � to �3 (0.60 to 0.50) reflects the fact that the true effect

size actually varies from one study to the next, while the distance from �3 to Y3

(0.5 to 0.4) is sampling error.

More generally, the observed effect Yi for any study is given by the grand mean,

the deviation of the study’s true effect from the grand mean, and the deviation of the

study’s observed effect from the study’s true effect. That is,

Yi ¼ �þ �i þ ei: ð12:1Þ

Therefore, to predict how far the observed effect Yi is likely to fall from � in any

given study we need to consider both the variance of �i and the variance of "i.

The distance from � (the triangle) to each �i (the circles) depends on the standard

deviation of the distribution of the true effects across studies, called � (tau) (or �2 for

its variance). The same value of �2 applies to all studies in the meta-analysis, and in

Figure 12.4 is represented by the normal curve at the bottom, which extends roughly

from 0.50 to 0.70.

The distance from �i to Yi depends on the sampling distribution of the sample

effects about �i. This depends on the variance of the observed effect size from

each study,VYi
, and so will vary from one study to the next. In Figure 12.4 the

curve for Study 1 is relatively wide while the curve for Study 2 is relatively narrow.

ζ 3

ε 3

Y3 θ 3

Study 3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
μ

Figure 12.3 Random-effects model – true and observed effect in one study.
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PERFORMING A RANDOM-EFFECTS META-ANALYSIS

In an actual meta-analysis, of course, rather than start with the population effect and

make projections about the observed effects, we start with the observed effects and

try to estimate the population effect. In other words our goal is to use the collection

of Yi to estimate the overall mean, �. In order to obtain the most precise estimate of

the overall mean (to minimize the variance) we compute a weighted mean, where

the weight assigned to each study is the inverse of that study’s variance.

To compute a study’s variance under the random-effects model, we need to know

both the within-study variance and �2, since the study’s total variance is the sum of

these two values. Formulas for computing the within-study variance were presented

in Part 3. A method for estimating the between-studies variance is given here so that

we can proceed with the worked example, but a full discussion of this method is

deferred to Part 4, where we shall pursue the issue of heterogeneity in some detail.

Estimating tau-squared

The parameter �2 (tau-squared) is the between-studies variance (the variance of the

effect size parameters across the population of studies). In other words, if we

somehow knew the true effect size for each study, and computed the variance of

these effect sizes (across an infinite number of studies), this variance would be �2.

One method for estimating �2 is the method of moments (or the DerSimonian and

Laird) method, as follows. We compute

T2 ¼ Q� df

C
; ð12:2Þ

Study 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Study 2

Study 3

μ

Figure 12.4 Random-effects model – between-study and within-study variance.
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where

Q ¼
Xk

i¼1

WiY
2
i �

Xk

i¼1

WiYi

 !2

Xk

i¼1

Wi

; ð12:3Þ

df ¼ k � 1; ð12:4Þ

where k is the number of studies, and

C ¼
X

Wi �
X

W2
iX

Wi

: ð12:5Þ

Estimating the mean effect size

In the fixed-effect analysis each study was weighted by the inverse of its variance.

In the random-effects analysis, too, each study will be weighted by the inverse of its

variance. The difference is that the variance now includes the original (within-

studies) variance plus the estimate of the between-studies variance, T 2. In keeping

with the book’s convention, we use �2 to refer to the parameter and T 2 to refer to the

sample estimate of that parameter.

To highlight the parallel between the formulas here (random effects) and those in

the previous chapter (fixed effect) we use the same notations but add an asterisk (*)

to represent the random-effects version. Under the random-effects model the weight

assigned to each study is

W�i ¼
1

V�Yi

; ð12:6Þ

where V �Yi
is the within-study variance for study i plus the between-studies variance,

T2. That is,

V �Yi
¼ VYi

þ T2:

The weighted mean, M*, is then computed as

M� ¼

Xk

i¼1

W�i Yi

Xk

i¼1

W�i

; ð12:7Þ

that is, the sum of the products (effect size multiplied by weight) divided by the sum

of the weights.
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The variance of the summary effect is estimated as the reciprocal of the sum of

the weights, or

VM� ¼
1Xk

i¼1

W�i

; ð12:8Þ

and the estimated standard error of the summary effect is then the square root of the

variance,

SEM� ¼
ffiffiffiffiffiffiffiffiffi
VM�
p

: ð12:9Þ

The 95% lower and upper limits for the summary effect would be computed as

LLM� ¼ M� � 1:96� SEM� ; ð12:10Þ

and

ULM� ¼ M� þ 1:96� SEM� : ð12:11Þ

Finally, a Z-value to test the null hypothesis that the mean effect � is zero could be

computed using

Z� ¼ M�

SEM�
: ð12:12Þ

For a one-tailed test the p-value is given by

p� ¼ 1� Fð� Z�j jÞ; ð12:13Þ

where we choose ‘þ’ if the difference is in the expected direction or ‘–’ otherwise,

and for a two-tailed test by

p� ¼ 2 1� F jZ�jð Þð Þ½ �; ð12:14Þ

where F(Z*) is the standard normal cumulative distribution. This function is tabled

in many introductory statistics books, and is implemented in Excel as the function

¼NORMSDIST(Z*).

Illustrative example
As before, we suggest that you turn to one of the worked examples in the next

chapter before proceeding with this discussion.

SUMMARY POINTS

� Under the random-effects model, the true effects in the studies are assumed to

have been sampled from a distribution of true effects.

� The summary effect is our estimate of the mean of all relevant true effects, and

the null hypothesis is that the mean of these effects is 0.0 (equivalent to a ratio

of 1.0 for ratio measures).
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� Since our goal is to estimate the mean of the distribution, we need to take

account of two sources of variance. First, there is within-study error in

estimating the effect in each study. Second (even if we knew the true mean

for each of our studies), there is variation in the true effects across studies.

Study weights are assigned with the goal of minimizing both sources of

variance.
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CHAPTER 13

Fixed-Effect Versus Random-Effects
Models

Introduction
Definition of a summary effect
Estimating the summary effect
Extreme effect size in a large study or a small study
Confidence interval
The null hypothesis
Which model should we use?
Model should not be based on the test for heterogeneity
Concluding remarks

INTRODUCTION

In Chapter 11 and Chapter 12 we introduced the fixed-effect and random-

effects models. Here, we highlight the conceptual and practical differences

between them.

Consider the forest plots in Figures 13.1 and 13.2. They include the same six

studies, but the first uses a fixed-effect analysis and the second a random-effects

analysis. These plots provide a context for the discussion that follows.

DEFINITION OF A SUMMARY EFFECT

Both plots show a summary effect on the bottom line, but the meaning of this

summary effect is different in the two models. In the fixed-effect analysis we

assume that the true effect size is the same in all studies, and the summary

effect is our estimate of this common effect size. In the random-effects analysis

we assume that the true effect size varies from one study to the next, and that

the studies in our analysis represent a random sample of effect sizes that could
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have been observed. The summary effect is our estimate of the mean of these

effects.

ESTIMATING THE SUMMARY EFFECT

Under the fixed-effect model we assume that the true effect size for all studies

is identical, and the only reason the effect size varies between studies is

sampling error (error in estimating the effect size). Therefore, when assigning

Impact of Intervention (Fixed effect)

Carroll

Grant

Peck

Donat

Stewart

Young

Summary

0.10

0.28

0.37

0.66

0.46

0.19

0.41

Std Diff
(g)

Relative
Weight

Standardized mean difference (g)
and 95% confidence interval

0.0–1.0 –0.5 0.5 1.0

12%

13%

8%

39%

10%

18%

100%

Figure 13.1 Fixed-effect model – forest plot showing relative weights.
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Young

Summary

0.10

0.28

0.37

0.66

0.46

0.19

0.36

Std Diff
(g)

16%

16%

13%

23%

14%

18%

100%

Relative
Weight

Standardized mean difference (g) with
95% confidence and prediction intervals

Impact of Intervention (Random effects)

Figure 13.2 Random-effects model – forest plot showing relative weights.
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weights to the different studies we can largely ignore the information in the

smaller studies since we have better information about the same effect size in

the larger studies.

By contrast, under the random-effects model the goal is not to estimate one true

effect, but to estimate the mean of a distribution of effects. Since each study

provides information about a different effect size, we want to be sure that all these

effect sizes are represented in the summary estimate. This means that we cannot

discount a small study by giving it a very small weight (the way we would in

a fixed-effect analysis). The estimate provided by that study may be imprecise, but

it is information about an effect that no other study has estimated. By the same

logic we cannot give too much weight to a very large study (the way we might in

a fixed-effect analysis). Our goal is to estimate the mean effect in a range of

studies, and we do not want that overall estimate to be overly influenced by any

one of them.

In these graphs, the weight assigned to each study is reflected in the size of the

box (specifically, the area) for that study. Under the fixed-effect model there is a

wide range of weights (as reflected in the size of the boxes) whereas under the

random-effects model the weights fall in a relatively narrow range. For example,

compare the weight assigned to the largest study (Donat) with that assigned to the

smallest study (Peck) under the two models. Under the fixed-effect model Donat is

given about five times as much weight as Peck. Under the random-effects model

Donat is given only 1.8 times as much weight as Peck.

EXTREME EFFECT SIZE IN A LARGE STUDY OR A SMALL STUDY

How will the selection of a model influence the overall effect size? In this example

Donat is the largest study, and also happens to have the highest effect size. Under

the fixed-effect model Donat was assigned a large share (39%) of the total weight

and pulled the mean effect up to 0.41. By contrast, under the random-effects model

Donat was assigned a relatively modest share of the weight (23%). It therefore had

less pull on the mean, which was computed as 0.36.

Similarly, Carroll is one of the smaller studies and happens to have the smallest

effect size. Under the fixed-effect model Carroll was assigned a relatively small

proportion of the total weight (12%), and had little influence on the summary effect.

By contrast, under the random-effects model Carroll carried a somewhat higher

proportion of the total weight (16%) and was able to pull the weighted mean toward

the left.

The operating premise, as illustrated in these examples, is that whenever �2 is

nonzero, the relative weights assigned under random effects will be more balanced

than those assigned under fixed effects. As we move from fixed effect to random

effects, extreme studies will lose influence if they are large, and will gain influence

if they are small.
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CONFIDENCE INTERVAL

Under the fixed-effect model the only source of uncertainty is the within-study

(sampling or estimation) error. Under the random-effects model there is this same

source of uncertainty plus an additional source (between-studies variance).

It follows that the variance, standard error, and confidence interval for the summary

effect will always be larger (or wider) under the random-effects model than under

the fixed-effect model (unless T 2 is zero, in which case the two models are the

same). In this example, the standard error is 0.064 for the fixed-effect model, and

0.105 for the random-effects model.

Study A

Study B

Study C

Study D

Summary

Effect size
and 95% confidence interval

Random-effects model

0.0–1.0 –0.5 0.5 1.0

Figure 13.4 Very large studies under random-effects model.

Study A

Study B

Study C

Study D

Summary

Effect size
and 95% confidence interval

Fixed-effect model

0.0–1.0 –0.5 0.5 1.0

Figure 13.3 Very large studies under fixed-effect model.
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Consider what would happen if we had five studies, and each study had an

infinitely large sample size. Under either model the confidence interval for the

effect size in each study would have a width approaching zero, since we know

the effect size in that study with perfect precision. Under the fixed-effect

model the summary effect would also have a confidence interval with a width

of zero, since we know the common effect precisely (Figure 13.3). By con-

trast, under the random-effects model the width of the confidence interval

would not approach zero (Figure 13.4). While we know the effect in each

study precisely, these effects have been sampled from a universe of possible

effect sizes, and provide only an estimate of the mean effect. Just as the error

within a study will approach zero only as the sample size approaches infinity,

so too the error of these studies as an estimate of the mean effect will

approach zero only as the number of studies approaches infinity.

More generally, it is instructive to consider what factors influence the standard

error of the summary effect under the two models. The following formulas are

based on a meta-analysis of means from k one-group studies, but the conceptual

argument applies to all meta-analyses. The within-study variance of each mean

depends on the standard deviation (denoted �) of participants’ scores and the

sample size of each study (n). For simplicity we assume that all of the studies

have the same sample size and the same standard deviation (see Box 13.1 for

details).

Under the fixed-effect model the standard error of the summary effect is given by

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

k � n

r
: ð13:1Þ

It follows that with a large enough sample size the standard error will approach zero,

and this is true whether the sample size is concentrated on one or two studies, or

dispersed across any number of studies.

Under the random-effects model the standard error of the summary effect is

given by

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

k � n
þ �

2

k

r
: ð13:2Þ

The first term is identical to that for the fixed-effect model and, again, with a

large enough sample size, this term will approach zero. By contrast, the second

term (which reflects the between-studies variance) will only approach zero as the

number of studies approaches infinity. These formulas do not apply exactly in

practice, but the conceptual argument does. Namely, increasing the sample size

within studies is not sufficient to reduce the standard error beyond a certain point

(where that point is determined by �2 and k). If there is only a small number of

studies, then the standard error could still be substantial even if the total n is in the

tens of thousands or higher.
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BOX 13.1 FACTORS THAT INFLUENCE THE STANDARD ERROR OF THE
SUMMARY EFFECT.

To illustrate the concepts with some simple formulas, let us consider a meta-

analysis of studies with the very simplest design, such that each study

comprises a single sample of n observations with standard deviation �. We

combine estimates of the mean in a meta-analysis. The variance of each

estimate is

VYi
¼ �

2

n

so the (inverse-variance) weight in a fixed-effect meta-analysis is

Wi ¼
1

�2=n
¼ n

�2

and the variance of the summary effect under the fixed-effect model the standard

error is given by

VM ¼
1Xk

i¼1

Wi

¼ 1

k � n=�2
¼ �2

k � n
:

Therefore under the fixed-effect model the (true) standard error of the summary

mean is given by

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

k � n

r
:

Under the random-effects model the weight awarded to each study is

W�i ¼
1

�2
�

n
� �

þ �2

and the (true) standard error of the summary mean turns out to be

SEM � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

k � n
þ �

2

k

r
:
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THE NULL HYPOTHESIS

Often, after computing a summary effect, researchers perform a test of the

null hypothesis. Under the fixed-effect model the null hypothesis being tested

is that there is zero effect in every study. Under the random-effects model the

null hypothesis being tested is that the mean effect is zero. Although some may

treat these hypotheses as interchangeable, they are in fact different, and it is

imperative to choose the test that is appropriate to the inference a researcher wishes

to make.

WHICH MODEL SHOULD WE USE?

The selection of a computational model should be based on our expectation about

whether or not the studies share a common effect size and on our goals in perform-

ing the analysis.

Fixed effect

It makes sense to use the fixed-effect model if two conditions are met. First, we

believe that all the studies included in the analysis are functionally identical.

Second, our goal is to compute the common effect size for the identified population,

and not to generalize to other populations.

For example, suppose that a pharmaceutical company will use a thousand patients to

compare a drug versus placebo. Because the staff can work with only 100 patients at a

time, the company will run a series of ten trials with 100 patients in each. The studies

are identical in the sense that any variables which can have an impact on the outcome

are the same across the ten studies. Specifically, the studies draw patients from a

common pool, using the same researchers, dose, measure, and so on (we assume that

there is no concern about practice effects for the researchers, nor for the different

starting times of the various cohorts). All the studies are expected to share a common

effect and so the first condition is met. The goal of the analysis is to see if the drug

works in the population from which the patients were drawn (and not to extrapolate to

other populations), and so the second condition is met, as well.

In this example the fixed-effect model is a plausible fit for the data and meets the

goal of the researchers. It should be clear, however, that this situation is relatively

rare. The vast majority of cases will more closely resemble those discussed imme-

diately below.

Random effects

By contrast, when the researcher is accumulating data from a series of studies that

had been performed by researchers operating independently, it would be unlikely

that all the studies were functionally equivalent. Typically, the subjects or inter-

ventions in these studies would have differed in ways that would have impacted on
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the results, and therefore we should not assume a common effect size. Therefore, in

these cases the random-effects model is more easily justified than the fixed-effect

model.

Additionally, the goal of this analysis is usually to generalize to a range of

scenarios. Therefore, if one did make the argument that all the studies used an

identical, narrowly defined population, then it would not be possible to extrapolate

from this population to others, and the utility of the analysis would be severely limited.

A caveat

There is one caveat to the above. If the number of studies is very small, then the

estimate of the between-studies variance (�2) will have poor precision. While the

random-effects model is still the appropriate model, we lack the information needed

to apply it correctly. In this case the reviewer may choose among several options,

each of them problematic.

One option is to report the separate effects and not report a summary effect.

The hope is that the reader will understand that we cannot draw conclusions

about the effect size and its confidence interval. The problem is that some readers

will revert to vote counting (see Chapter 28) and possibly reach an erroneous

conclusion.

Another option is to perform a fixed-effect analysis. This approach would yield a

descriptive analysis of the included studies, but would not allow us to make

inferences about a wider population. The problem with this approach is that (a)

we do want to make inferences about a wider population and (b) readers will make

these inferences even if they are not warranted.

A third option is to take a Bayesian approach, where the estimate of �2 is based on

data from outside of the current set of studies. This is probably the best option, but the

problem is that relatively few researchers have expertise in Bayesian meta-analysis.

Additionally, some researchers have a philosophical objection to this approach.

For a more general discussion of this issue see When does it make sense to

perform a meta-analysis in Chapter 40.

MODEL SHOULD NOT BE BASED ON THE TEST FOR HETEROGENEITY

In the next chapter we will introduce a test of the null hypothesis that the between-

studies variance is zero. This test is based on the amount of between-studies

variance observed, relative to the amount we would expect if the studies actually

shared a common effect size.

Some have adopted the practice of starting with a fixed-effect model and then

switching to a random-effects model if the test of homogeneity is statistically

significant. This practice should be strongly discouraged because the decision to

use the random-effects model should be based on our understanding of whether or

not all studies share a common effect size, and not on the outcome of a statistical test

(especially since the test for heterogeneity often suffers from low power).
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If the study effect sizes are seen as having been sampled from a distribution of

effect sizes, then the random-effects model, which reflects this idea, is the logical one

to use. If the between-studies variance is substantial (and statistically significant) then

the fixed-effect model is inappropriate. However, even if the between-studies var-

iance does not meet the criterion for statistical significance (which may be due simply

to low power) we should still take account of this variance when assigning weights. If

T 2 turns out to be zero, then the random-effects analysis reduces to the fixed-effect

analysis, and so there is no cost to using this model.

On the other hand, if one has elected to use the fixed-effect model a priori but the

test of homogeneity is statistically significant, then it would be important to revisit

the assumptions that led to the selection of a fixed-effect model.

CONCLUDING REMARKS

Our discussion of differences between the fixed-model and the random-effects

model focused largely on the computation of a summary effect and the confidence

intervals for the summary effect. We did not address the implications of the

dispersion itself. Under the fixed-effect model we assume that all dispersion in

observed effects is due to sampling error, but under the random-effects model we

allow that some of that dispersion reflects real differences in effect size across

studies. In the chapters that follow we discuss methods to quantify that dispersion

and to consider its substantive implications.

Although throughout this book we define a fixed-effect meta-analysis as assum-

ing that every study has a common true effect size, some have argued that the fixed-

effect method is valid without making this assumption. The point estimate of the

effect in a fixed-effect meta-analysis is simply a weighted average and does not

strictly require the assumption that all studies estimate the same thing. For simpli-

city and clarity we adopt a definition of a fixed-effect meta-analysis that does

assume homogeneity of effect.

SUMMARY POINTS

� A fixed-effect meta-analysis estimates a single effect that is assumed to be

common to every study, while a random-effects meta-analysis estimates the

mean of a distribution of effects.

� Study weights are more balanced under the random-effects model than under the

fixed-effect model. Large studies are assigned less relative weight and small

studies are assigned more relative weight as compared with the fixed-effect

model.

� The standard error of the summary effect and (it follows) the confidence

intervals for the summary effect are wider under the random-effects model

than under the fixed-effect model.
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� The selection of a model must be based solely on the question of which model

fits the distribution of effect sizes, and takes account of the relevant source(s)

of error. When studies are gathered from the published literature, the random-

effects model is generally a more plausible match.

� The strategy of starting with a fixed-effect model and then moving to a

random-effects model if the test for heterogeneity is significant is a mistake,

and should be strongly discouraged.
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CHAPTER 14

Worked Examples (Part 1)

Introduction
Worked example for continuous data (Part 1)
Worked example for binary data (Part 1)
Worked example for correlational data (Part 1)

INTRODUCTION

In this chapter we present worked examples for continuous data (using the standar-

dized mean difference), binary data (using the odds ratio) and correlational data

(using the Fisher’s z transformation).

All of the data sets and all computations are available as Excel spreadsheets on

the book’s website (www.Meta-Analysis.com).

WORKED EXAMPLE FOR CONTINUOUS DATA (PART 1)

In this example we start with the mean, standard deviation, and sample size, and will

use the bias-corrected standardized mean difference (Hedges’ g) as the effect size

measure.

Summary data

The summary data for six studies are presented in Table 14.1.

Compute the effect size and its variance for each study

The first step is to compute the effect size (g) and variance for each study using the

formulas in Chapter 4 (see (4.18) to (4.24)). For the first study (Carroll) we compute

the pooled within-groups standard deviation

Introduction to Meta-Analysis.  Michael Borenstein, L. V. Hedges, J. P. T. Higgins and H. R. Rothstein  
© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-05724-7



Table 14.1 Dataset 1 – Part A (basic data).

Study Treated Control

Mean SD n Mean SD n

Carroll 94 22 60 92 20 60
Grant 98 21 65 92 22 65
Peck 98 28 40 88 26 40
Donat 94 19 200 82 17 200
Stewart 98 21 50 88 22 45
Young 96 21 85 92 22 85

Table 14.2 Dataset 1 – Part B (fixed-effect computations).

Study Effect size Variance Within Weight Calculated quantities

Y VY W WY WY 2 W 2

Carroll 0.095 0.033 30.352 2.869 0.271 921.214
Grant 0.277 0.031 32.568 9.033 2.505 1060.682
Peck 0.367 0.050 20.048 7.349 2.694 401.931
Donat 0.664 0.011 95.111 63.190 41.983 9046.013
Stewart 0.462 0.043 23.439 10.824 4.999 549.370
Young 0.185 0.023 42.698 7.906 1.464 1823.115

Sum 244.215 101.171 53.915 13802.325

Table 14.3 Dataset 1 – Part C (random-effects computations)

Study Effect size
Y

Variance
Within VY

Variance
Between T 2

Variance Total
VY + T

2
Weight
W*

Calculated
quantities W*Y

Carroll 0.095 0.033 0.037 0.070 14.233 1.345
Grant 0.277 0.031 0.037 0.068 14.702 4.078
Peck 0.367 0.050 0.037 0.087 11.469 4.204
Donat 0.664 0.011 0.037 0.048 20.909 13.892
Stewart 0.462 0.043 0.037 0.080 12.504 5.774
Young 0.185 0.023 0.037 0.061 16.466 3.049

Sum 90.284 32.342
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Swithin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
60� 1ð Þ � 222 þ 60� 1ð Þ � 202

60þ 60� 2

s
¼ 21:0238:

Then we compute the standardized mean difference, d, and its variance as

d1 ¼
94� 92

21:0238
¼ 0:0951;

Carroll

Grant

Peck

Donat

Stewart

Young

Summary

0.10

0.28

0.37

0.66

0.46

0.19

0.41

Std Diff
(g)

Relative
Weight

Standardized mean difference (g)
and 95% confidence interval

Hedges’ g (Fixed effect)

0.0–1.0 –0.5 0.5 1.0

12%

13%

8%

39%

10%

18%

100%

Figure 14.1 Forest plot of Dataset 1 – fixed-effect weights.
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16%

16%

13%
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14%
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Relative
Weight

Standardized mean difference (g)
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Figure 14.2 Forest plot of Dataset 1 – random-effects weights.
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and

Vd1
¼ 60þ 60

60� 60
þ 0:09512

2 60þ 60ð Þ ¼ 0:0334:

The correction factor (J) is estimated as

J ¼ 1� 3

4� 118� 1

� �
¼ 0:9936:

Finally, the bias-corrected standardized mean difference, Hedges’ g, and its var-

iance are given by

g
1
¼ 0:9936� 0:0951 ¼ 0:0945;

and
Vg1
¼ 0:99362 � 0:0334 ¼ 0:0329:

This procedure is repeated for all six studies.

Compute the summary effect using the fixed-effect model

The effect size and its variance are copied into Table 14.2 where they are assigned

the generic labels Y and VY. We then compute the other values shown in the table.

For Carroll,

W1 ¼
1

0:0329
¼ 30:3515;

W1Y1 ¼ 30:3515� 0:0945 ¼ 2:8690;

and so on for the other five studies. The sum of W is 244.215 and the sum of WY is

101.171. From these numbers we can compute the summary effect and related

statistics, using formulas from Part 3 as follows (see (11.3) to (11.10)). In the

computations that follow we use the generic M to represent Hedges’ g.

M ¼ 101:171

244:215
¼ 0:4143;

VM ¼
1

244:215
¼ 0:0041;

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0041
p

¼ 0:0640;

LLM ¼ 0:4143� 1:96� 0:0640 ¼ 0:2889;

ULM ¼ 0:4143þ 1:96� 0:0640 ¼ 0:5397;

and
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Z ¼ 0:4143

0:0640
¼ 6:4739:

For a one-tailed test the p-value is given by

p ¼ 1� F 6:4739ð Þ < 0:0001;

and for a two-tailed test, by

p ¼ 2 1� F 6:4739j jð Þ½ � < 0:0001:

In words, using fixed-effect weights, the standardized mean difference (Hedges’ g)

is 0.41 with a 95% confidence interval of 0.29 to 0.54. The Z-value is 6.47, and

the p-value is <0.0001 (one-tailed) or <0.0001 (two tailed). These results are

illustrated in Figure 14.1.

Compute an estimate of t2

To estimate �2, the variance of the true standardized mean differences, we use

the DerSimonian and Laird method (see (12.2) to (12.5)). Using sums from

Table 14.2,

Q ¼ 53:915� 101:1712

244:215

� �
¼ 12:0033;

df ¼ ð6� 1Þ ¼ 5;

C ¼ 244:215� 13802:325

244:215

� �
¼ 187:698;

and

T2 ¼ 12:0033� 5

187:698
¼ 0:0373:

Compute the summary effect using the random-effects model

To compute the summary effect using the random-effects model we use the

same formulas as for the fixed effect, but the variance for each study is now

the sum of the variance within studies plus the variance between studies (see

(12.6) to (12.13)).

For Carroll,

W
�

1 ¼
1

ð0:0329þ 0:0373Þ ¼
1

ð0:070Þ ¼ 14:2331;

and so on for the other studies as shown in Table 14.3. Note that the within-study

variance is unique for each study, but there is only one value of �2, so this value

(estimated as 0.037) is applied to all studies.
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Then,

M� ¼32:342

90:284
¼ 0:3582; ð14:1Þ

VM � ¼ 1

90:284
¼ 0:0111; ð14:2Þ

SEM � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0111
p

¼ 0:1052;

LL M � ¼ 0:3582� 1:96� 0:1052 ¼ 0:1520;

UL M � ¼ 0:3582þ 1:96� 0:1052 ¼ 0:5645;

Z�¼ 0:3582

0:1052
¼ 3:4038;

and, for a one-tailed test

p�¼ 1� Fð3:4038Þ ¼ 0:0003

or, for a two-tailed test

p�¼ 2 1� F 3:4038j jð Þ½ � ¼ 0:0007:

In words, using random-effect weights, the standardized mean difference

(Hedges’ g) is 0.36 with a 95% confidence interval of 0.15 to 0.56. The Z-value is

3.40, and the p-value is 0.0003 (one-tailed) or 0.0007 (two tailed). These results are

illustrated in Figure 14.2.

WORKED EXAMPLE FOR BINARY DATA (PART 1)

In this example we start with the events and non-events in two independent groups

and will use the odds ratio as the effect size measure.

Summary data

The summary data for six studies is presented in Table 14.4.

Compute the effect size and its variance for each study

For an odds ratio all computations are carried out using the log transformed values

(see formulas (5.8) to (5.10)). For the first study (Saint) we compute the odds ratio,

then the log odds ratio and its variance as
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Table 14.5 Dataset 2 – Part B (fixed-effect computations).

Study Effect size Variance Within Weight Calculated quantities

Y VY W WY WY 2 W 2

Saint �0.366 0.185 5.402 �1.978 0.724 29.184
Kelly �0.288 0.290 3.453 �0.993 0.286 11.925
Pilbeam �0.384 0.156 6.427 �2.469 0.948 41.300
Lane �1.322 0.058 17.155 �22.675 29.971 294.298
Wright �0.417 0.282 3.551 �1.480 0.617 12.607
Day �0.159 0.160 6.260 �0.998 0.159 39.190

Sum 42.248 �30.594 32.705 428.503

Table 14.4 Dataset 2 – Part A (basic data).

Study Treated Control

Events Non-events n Events Non-events n

Saint 12 53 65 16 49 65
Kelly 8 32 40 10 30 40
Pilbeam 14 66 80 19 61 80
Lane 25 375 400 80 320 400
Wright 8 32 40 11 29 40
Day 16 49 65 18 47 65

Table 14.6 Dataset 2 – Part C (random-effects computations).

Study Effect size
Y

Variance
Within VY

Variance
Between T 2

Variance Total
VY þT 2

Weight
W*

Calculated
quantities W* Y

Saint �0.366 0.185 0.173 0.358 2.793 �1.023
Kelly �0.288 0.290 0.173 0.462 2.162 �0.622
Pilbeam �0.384 0.156 0.173 0.329 3.044 �1.169
Lane �1.322 0.058 0.173 0.231 4.325 �5.717
Wright �0.417 0.282 0.173 0.455 2.200 �0.917
Day �0.159 0.160 0.173 0.333 3.006 �0.479

Sum 17.531 �9.928
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OddsRatio1 ¼
12� 49

53� 16
¼ 0:6934;

LogOddsRatio1 ¼ ln 0:6934ð Þ ¼ �0:3662;

and

VLogOddsRatio1
¼ 1

12
þ 1

53
þ 1

16
þ 1

49
¼ 0:1851:

This procedure is repeated for all six studies.

Odds ratio (Fixed effect)
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Lane

Wright

Day

Summary

0.69

0.75

0.68

0.27

0.66

0.85
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Odds ratio
and 95% confidence interval

1.00.20 0.50 2.0 5.0
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Figure 14.3 Forest plot of Dataset 2 – fixed-effect weights.

Odds ratio (Random effects)
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Figure 14.4 Forest plot of Dataset 2 – random-effects weights.
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Compute the summary effect using the fixed-effect model

The effect size and its variance (in log units) are copied into Table 14.5 where they

are assigned the generic labels Y and VY.

For Saint

W1 ¼
1

0:1851
¼ 5:4021;

W1Y1 ¼ 5:4021� �0:3662ð Þ ¼ �1:9780;

and so on for the other five studies.

The sum of W is 42.248 and the sum of WY is �30.594. From these numbers we

can compute the summary effect and related statistics as follows (see (11.3) to

(11.10)). In the computations that follow we use the generic M to represent the log

odds ratio.

M ¼ �30:594

42:248
¼ �0:7241;

VM ¼
1

42:248
¼ 0:0237;

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0237
p

¼ 0:1539;

LLM ¼ �0:7241ð Þ � 1:96� 0:1539 ¼ �1:0257;

ULM ¼ �0:7241ð Þ þ 1:96� 0:1539 ¼ �0:4226;

and

Z ¼ �0:7241

0:1539
¼ �4:7068:

For a one-tailed test the p-value is given by

p ¼ 1� F �4:7068ð Þ < 0:0001;

and for a two-tailed test, by

p ¼ 2 1� F �4:7068j jð Þ½ � < 0:0001:

We can convert the log odds ratio and confidence limits to the odds ratio scale using

OddsRatio ¼ expð�0:7241Þ ¼ 0:4847;

LLOddsRatio ¼ expð�1:0257Þ ¼ 0:3586;
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and

ULOddsRatio ¼ expð�0:4226Þ ¼ 0:6553:

In words, using fixed-effect weights, the summary odd ratio is 0.48 with a 95%

confidence interval of 0.36 to 0.66. The Z-value is �4.71, and the p-value is

<0.0001 (one-tailed) or <0.0001 (two tailed). These results are illustrated in

Figure 14.3.

Compute an estimate of t2

To estimate �2, the variance of the true log odds ratios, we use the DerSimonian and

Laird method (see (12.2) to (12.5)). Using sums from Table 14.5,

Q ¼ 32:705� �30:5942

42:248

� �
¼10:5512;

df ¼ ð6� 1Þ ¼ 5;

C ¼ 42:248� 428:503

42:248

� �
¼32:1052;

and
T2 ¼ 10:5512� 5

32:1052
¼ 0:1729:

These values are reported only on a log scale.

Compute the summary effect using the random-effects model

To compute the summary effect using the random-effects model, we use the

same formulas as for the fixed effect, but the variance for each study is now

the sum of the variance within studies plus the variance between studies (see

(12.6) to (12.13)).

For Saint,

W�1 ¼
1

ð0:1851þ 0:1729Þ ¼
1

ð0:3580Þ ¼ 2:7932;

and so on for the other studies as shown in Table 14.6. Note that the within-study

variance is unique for each study, but there is only one value of �2, so this value

(estimated as 0.173) is applied to all studies.

Then,

M�¼�9:928

17:531
¼ �0:5663; ð14:3Þ
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VM � ¼ 1

17:531
¼ 0:0570; ð14:4Þ

SEM � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0570
p

¼ 0:2388;

LLM � ¼ �0:5663ð Þ � 1:96� 0:2388 ¼ �1:0344;

ULM � ¼ �0:5663ð Þ þ 1:96� 0:2388 ¼ �0:0982;

Z�¼�0:5663

0:2388
¼ �2:3711;

and, for a one-tailed test

p�¼1� Fð�2:3711Þ ¼ 0:0089

or, for a two-tailed test

p�¼2 1� F �2:3711j jð Þ½ � ¼ 0:0177:

We can convert the log odds ratio and confidence limits to the odds ratio scale using

OddsRatio�¼ expð�0:5663Þ ¼ 0:5676;

LLOddsRatio � ¼ expð�1:0344Þ ¼ 0:3554;

and
ULOddsRatio � ¼ expð�0:0982Þ ¼ 0:9065:

In words, using random-effects weights, the summary odds ratio is 0.57 with a 95%

confidence interval of 0.36 to 0.91. The Z-value is�2.37, and the p-value is 0.0089

(one-tailed) or 0.0177 (two tailed). These results are illustrated in Figure 14.4.

WORKED EXAMPLE FOR CORRELATIONAL DATA (PART 1)

Summary data

In this example we start with the correlation and sample size in six studies, as shown

in Table 14.7.

Compute the effect size and its variance for each study

For correlations, all computations are carried out using the Fisher’s z transformed

values (see formulas (6.2) to (6.3)). For the first study (Fonda) we compute the

Fisher’s z value and its variance as
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z1 ¼ 0:5� ln
1þ 0:50

1� 0:50

� �
¼ 0:5493;

and

V1 ¼
1

40� 3
¼ 0:0270:

This procedure is repeated for all six studies.

Table 14.8 Dataset 3 – Part B (fixed-effect computations)

Study Effect size Variance Within Weight Calculated quantities

Y VY W WY WY2 W2

Fonda 0.5493 0.0270 37.000 20.324 11.164 1369.000
Newman 0.6931 0.0115 87.000 60.304 41.799 7569.000
Grant 0.4236 0.0455 22.000 9.320 3.949 484.000
Granger 0.2027 0.0025 397.000 80.485 16.317 157609.000
Milland 0.8673 0.0175 57.000 49.436 42.876 3249.000
Finch 0.4847 0.0213 47.000 22.781 11.042 2209.000

Sum 647.000 242.650 127.147 172489.000

Table 14.7 Dataset 3 – Part A (basic data).

Study Correlation N

Fonda 0.50 40
Newman 0.60 90
Grant 0.40 25
Granger 0.20 400
Milland 0.70 60
Finch 0.45 50

Table 14.9 Dataset 3 – Part C (random-effects computations).

Study Effect size
Y

Variance
Within VY

Variance
Between T 2

Variance Total
VY + T

2
Weight
W*

Calculated
quantities W*Y

Fonda 0.549 0.027 0.082 0.109 9.183 5.044
Newman 0.693 0.012 0.082 0.093 10.711 7.424
Grant 0.424 0.046 0.082 0.127 7.854 3.327
Granger 0.203 0.003 0.082 0.084 11.850 2.402
Milland 0.867 0.018 0.082 0.099 10.059 8.724
Finch 0.485 0.021 0.082 0.103 9.695 4.699

Sum 59.351 31.621
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Compute the summary effect using the fixed-effect model

The effect size and its variance (in the Fisher’s z metric) are copied into Table 14.8

where they are assigned the generic labels Y and VY.

For Fonda

W1 ¼
1

0:0270
¼ 37:0000;

Correlation (Fixed effect)

Fonda

Newman

Grant

Granger

Milland

Finch

Summary

0.50

0.60
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0.20
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Correlation Relative

Weight
Correlation

and 95% confidence interval

0.0
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100%

0.75–0.75

Figure 14.5 Forest plot of Dataset 3 – fixed-effect weights.

Correlation (Random effects)
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Figure 14.6 Forest plot of Dataset 3 – random-effects weights.
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W1Y1 ¼ 37:000� 0:5493ð Þ ¼ 20:3243;

and so on for the other five studies.

The sum of W is 647.000 and the sum of WY is 242.650. From these numbers we can

compute the summary effect and related statistics as follows (see (11.3) to (11.10)). In

the computations that follow we use the generic M to represent the Fisher’s z score.

M ¼ 242:650

647:000
¼ 0:3750;

VM ¼
1

647:000
¼ 0:0015;

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0015
p

¼ 0:0393;

LLM¼ 0:3750� 1:96� 0:0393 ¼ 0:2980;

ULM ¼ 0:3750þ 1:96� 0:0393 ¼ 0:4521;

and

Z ¼ 0:3750

0:0393
¼ 9:5396:

For a one-tailed test the p-value is given by

p ¼ 1� F 9:5396ð Þ < 0:0001;

and for a two-tailed test, by

p ¼ 2 1� F 9:5396j jð Þ½ � < 0:0001:

We can convert the effect size and confidence limits from the Fisher’s z metric to

correlations using

r ¼ e 2�0:3750ð Þ � 1

e 2�0:3750ð Þ þ 1
¼ 0:3584;

LLr ¼
e 2�0:2980ð Þ � 1

e 2�0:2980ð Þ þ 1
¼ 0:2895;

and

ULr ¼
e 2�0:4521ð Þ � 1

e 2�0:4521ð Þ þ 1
¼ 0:4236:

In words, using fixed-effect weights, the summary estimate of the correlation is 0.36

with a 95% confidence interval of 0.29 to 0.42. The Z-value is 9.54, and the p-value

is <0.0001 (one-tailed) or <0.0001 (two tailed). These results are illustrated in

Figure 14.5.
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Compute an estimate of t2

To estimate �2, the variance of the true Fishers’z, we use the DerSimonian and Laird

method (see (12.2) to (12.5)). Using sums from Table 14.8,

Q ¼ 127:147� 242:6502

647:000

� �
¼ 36:1437;

df ¼ ð6� 1Þ ¼ 5;

C ¼ 647:000� 172489:000

647:000

� �
¼ 380:4019;

and

T2 ¼ 36:1437� 5

380:4019
¼ 0:0819:

Compute the summary effect using the random-effects model

To compute the summary effect using the random-effects model, we use the same

formulas as for the fixed effect, but the variance for each study is now the sum of the

variance within studies plus the variance between studies (see (12.6) to (12.13)).

For Fonda,

W�1 ¼
1

ð0:0270þ 0:0819Þ ¼
1

ð0:1089Þ ¼ 9:1829;

and so on for the other studies as shown in Table 14.9. Note that the within-study

variance is unique for each study, but there is only one value of �2, so this value

(estimated as 0.0819) is applied to all studies.

Then,

M�¼31:621

59:351
¼ 0:5328; ð14:5Þ

VM � ¼ 1

59:351
¼ 0:0168; ð14:6Þ

SEM � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0168
p

¼ 0:1298;

LL M � ¼ 0:5328ð Þ � 1:96� 0:1298 ¼ 0:2784;

UL M � ¼ 0:5328ð Þ þ 1:96� 0:1298 ¼ 0:7872;

and
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Z�¼0:5328

0:1298
¼ 4:1045:

Then, for a one-tailed test

p�¼1� Fð4:1045Þ < 0:0001;

or, for a two-tailed test

p�¼2 1� F 4:1045j jð Þ½ � < 0:0001:

We can convert the effect size and confidence limits from the Fisher’s z metric to

correlations using

r�¼e 2�0:5328ð Þ � 1

e 2�0:5328ð Þ þ 1
¼ 0:4875;

LLr � ¼
e 2�0:2784ð Þ � 1

e 2�0:2784ð Þ þ 1
¼ 0:2714;

and

ULr � ¼
e 2�0:7872ð Þ � 1

e 2�0:7872ð Þ þ 1
¼ 0:6568:

In words, using random-effects weights, the summary estimate of the correlation is

0.49 with a 95% confidence interval of 0.27 to 0.66. The Z-value is 4.10, and the

p-value is <0.0001 (one-tailed) or <0.0001 (two tailed). These results are illu-

strated in Figure 14.6.

SUMMARY POINTS

� This chapter includes worked examples showing how to compute the sum-

mary effect using fixed-effect and random-effects models.

� For the standardized mean difference we work with the effect sizes directly.

� For ratios we work with the log transformed data.

� For correlations we work with the Fisher’s z transformed data.

� These worked examples are available as Excel files on the book’s web site.
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CHAPTER 15

Overview

Introduction
Nomenclature
Worked examples

INTRODUCTION

A central theme in this volume is that the goal of a synthesis is not simply to compute

a summary effect, but rather to make sense of the pattern of effects. An intervention

that consistently reduces the risk of criminal behavior by 40% across a range of

studies is very different from one that reduces the risk by 40% on average with a risk

reduction that ranges from 10% in some studies to 70% in others. If the effect size is

consistent across studies we need to know that and to consider the implications, and if

it varies we need to know that and consider the different implications.

The first chapter in this Part deals with the question of how to identify and

quantify the heterogeneity in effect sizes. The problem we need to address is that

the observed variation in the estimated effect sizes is partly spurious, in that it

includes both true variation in effect sizes and also random error. We show how to

isolate the true variance and then use it to create an array of measures that provide

various perspectives on the dispersion. These are the Q statistic (a measure of

weighted squared deviations), the results of a statistical test based on the Q statistic

(p), the between-studies variance (T 2), the between-studies standard deviation (T ),

and the ratio of true heterogeneity to total observed variation (I2). Then, we show

how these measures can be used to address the following questions.

� Is there evidence of heterogeneity in true effect sizes?

� What is the variance of the true effects?

� What are the substantive implications of this heterogeneity?

� What proportion of the observed dispersion is real?

The other chapters in this Part address methods to explore the reasons for hetero-

geneity. In Chapter 19 we show how to compare the effect size in different
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subgroups of studies (such as studies that used different populations, or studies that

used different variants of the intervention), similar to analysis of variance in

primary studies. In Chapter 20 we show how to assess the relationship between

effect size and covariates (such as the dose of a drug or the mean age in the study

sample), similar to multiple regression in primary studies. Finally, Chapter 21

includes a discussion of issues (and some important caveats) related to both

techniques.

NOMENCLATURE

As we did in the previous part we distinguish between a true effect size and an

observed effect size. A study’s true effect size is the effect size in the underlying

population, and is the effect size that we would observe if the study had an infinitely

large sample size (and therefore no sampling error). A study’s observed effect size is

the effect size that is actually observed.

We use the terms variation and dispersion to refer to differences among values,

sometimes true effects and sometimes observed effects, depending on the context.

By contrast, we use heterogeneity to mean heterogeneity in true effects only.

We shall introduce several measures of heterogeneity, one of which is tau-

squared, defined as the variance of the true effect sizes. We will use �2 to refer to

the parameter (the population value) and T2 to refer to our estimate of this

parameter.

WORKED EXAMPLES

The discussion of formulas and concepts in Chapter 16 is followed by a section with

worked examples using a series of effect sizes (standardized mean differences, odds

ratios, and correlations). While reading the sections on formulas and concepts, it

will be helpful to refer to one or more of the worked examples.

These examples are continuations of the three worked examples in Chapter 14,

and are all available as Excel spreadsheets on the book’s web site.
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CHAPTER 16

Identifying and Quantifying
Heterogeneity

Introduction
Isolating the variation in true effects
Computing Q
Estimating �2

The I 2 statistic
Comparing the measures of heterogeneity
Confidence intervals for �2

Confidence intervals (or uncertainty intervals) for I 2

INTRODUCTION

Under the random-effects model we allow that the true effect size may vary from

study to study. In this chapter we discuss approaches to identify and then quantify

this heterogeneity.

ISOLATING THE VARIATION IN TRUE EFFECTS

The mechanisms for describing the variation among scores in a primary study are

well known. We can compute the standard deviation of the scores and discuss the

proportion of subjects falling within a given range. We can compute the variance of

the scores and discuss what proportion of variance can be explained by covariates.

Our goals are similar in a meta-analysis, in the sense that we want to describe the

variation, using indices such as the standard deviation and variance. However,

the process is more complicated for the following reason. When we speak about

the heterogeneity in effect sizes we mean the variation in the true effect sizes.

However, the variation that we actually observe is partly spurious, incorporating

both (true) heterogeneity and also random error.
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To understand the problem, suppose for a moment that all studies in the analysis shared

the same true effect size, so that the (true) heterogeneity is zero. Under this assumption,

we would not expect the observed effects to be identical to each other. Rather, because of

within-study error, we would expect each to fall within some range of the common effect.

Now, assume that the true effect size does vary from one study to the next. In this

case, the observed effects vary from one another for two reasons. One is the real

heterogeneity in effect size, and the other is the within-study error. If we want to

quantify the heterogeneity we need to partition the observed variation into these two

components, and then focus on the former.

The mechanism that we use to extract the true between-studies variation from the

observed variation is as follows.

1. We compute the total amount of study-to-study variation actually observed.

2. We estimate how much the observed effects would be expected to vary from

each other if the true effect was actually the same in all studies.

3. The excess variation (if any) is assumed to reflect real differences in effect size

(that is, the heterogeneity).

Consider the top row in Figure 16.1. The observed effects (and therefore variation in

the observed effects) are identical in A and B. The difference between A and B is

that the confidence intervals for each study in A are relatively wide, while the

confidence intervals for each study in B are relatively narrow. The visual impression

in A is that all studies could share a common effect, with the observed dispersion

falling within the umbrella of the confidence intervals. By contrast, the confidence

0.0–1.0 1.0 0.0–1.0 1.0

0.0–1.0 1.0 0.0–1.0 1.0

A

C

B

D

Figure 16.1 Dispersion across studies relative to error within studies.
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intervals for the B studies are quite narrow, and cannot comfortably account for

the observed dispersion.

Similarly, consider the bottom row in this plot. Again, the observed effects

are identical in C and D, but C has wider confidence intervals around each study.

In C, the effects can be fully explained by within-study error, while in D they cannot.

The difference between A and B (on the one hand) versus C and D (on the other) is

that we have changed the absolute value (or the scale) of the dispersion. To move

from A to C we multiplied both the within-study variance and the observed variance

by 2.0 so that the scale has increased but the ratio (observed/within) is unchanged.

The same holds true for B and D. While the effects are more widely dispersed in the

second row than in the first, this is not relevant to the purpose of isolating the true

dispersion. What matters is only the ratio of observed to expected dispersion, which

is the same in A and C (and is the same in B and D).

It is this aspect of the dispersion – the one reflected in the difference of A versus B,

and of C versus D that we want to capture for the purpose of isolating the true

variation. In other words, we need a statistic that is sensitive to the ratio of

the observed variation to the within-study error, rather than their absolute values.

The statistic that we use for this purpose is Q.

COMPUTING Q

The first step in partitioning the variation is to compute Q, defined as

Q 5
Xk

i 5 1

Wi Yi �Mð Þ2; ð16:1Þ

where Wi is the study weight (1/Vi), Yi is the study effect size, and M is the summary

effect and k is the number of studies. In words, we compute the deviation of each effect

size from the mean, square it, weight this by the inverse-variance for that study, and

sum these values over all studies to yield the weighted sum of squares (WSS), or Q.

The same formula can be written as

Q 5
Xk

i 5 1

Yi �M

Si

� �2
ð16:2Þ

to highlight the fact that Q is a standardized measure, which means that it is not

affected by the metric of the effect size index. The analogy would be to the

standardized mean difference d, where the mean difference is divided by the

within-study standard deviation.

Finally, an equivalent formula, useful for computations, is

Q 5
Xk

i 5 1

WiY
2
i �

Xk

i 5 1

WiYi

 !2

Xk

i 5 1

Wi

: ð16:3Þ
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The expected value of Q based on within-study error

The next step is to determine the expected value of Q on the assumption that all

studies share a common effect size, and (it follows) all the variation is due to

sampling error within studies. Because Q is a standardized measure the expected

value does not depend on the metric of effect size, but is simply the degrees of

freedom (df ),

df 5 k � 1; ð16:4Þ

where k is the number of studies.

The excess variation
Since Q is the observed WSS and df is the expected WSS (under the assumption that

all studies share a common effect), the difference,

Q� df;

reflects the excess variation, the part that will be attributed to differences in the true

effects from study to study.

Ratio of observed to expected variation
Earlier, we used Figure 16.1 to introduce the concept of excess variation, and

showed that it needs to be based on the ratio of observed variance to the within-

study variance. In Figure 16.2 we reproduce the same four plots but add the

0.0–1.0 1.0 0.0–1.0 1.0

0.0–1.0 1.0 0.0–1.0 1.0

A

C

B

D

Q = 3.00

(Q–df) < 0

p = 0.70

T 2 = 0.00

T 2 = 0.00

T = 0.00

I 2 = 0.00%

I 2 = 0.00%

T = 0.00

p = 0.035

T 2 = 0.006

I 2 = 58.34%

T = 0.077

Q  = 12.00

Q–df  =  7.00

Q  =  3.00

(Q–df) < 0

p = 0.70

T 2 = 0.037

T = 0.193

I 2 = 58.34%

p = 0.035

Q  =  12.00

(Q–df  =  7.00

Figure 16.2 Q in relation to df as measure of dispersion.
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Q statistic, which quantifies this concept. The plot also includes additional statistics,

which will be explained below.

First, consider the top row. For plot A the observed value of Q is 3.00, versus an

expected value (under the assumption of a common effect size) of 5.00 (that is,

k�1). In this case the observed variation is less than we would expect based on

within-study error (Q is less than the degrees of freedom). For plot B the observed

value of Q is 12.00, versus an expected value of 5.00, so the observed variation is

greater than we would expect based on within-study error (Q is greater than the

degrees of freedom). This, of course, is consistent with the visual impression

discussed earlier. We see the same thing in the second row, where for plot C the

observed value of Q is 3.00, versus an expected value of 5.00, (Q < df) and for plot

D the observed value of Q is 12.00, versus an expected value of 5.00, (Q> df).

Note that Q is the same (3.00) in A and C because these plots share the same ratio,

despite the fact that the absolute range of effects is higher in C. Similarly, the value

of Q is the same (12.00) in B and D because these plots share the same ratio, despite

the fact that the absolute range of effects is higher in D.

At this point we have the values Q, which reflects the total dispersion (WSS) and

Q�df, which reflects the excess dispersion. However, Q is not an intuitive measure. For

one thing, Q is a sum (rather than a mean) and, as such, depends strongly on the number

of studies. For another, Q is on a standardized scale, and for some purposes we will want

to express the dispersion either as a ratio or on the same scale as the effect size itself.

Now that we have Q, however, we can use it to construct measures that do address

specific needs, as outlined in Figure 16.3. To test the assumption of homogeneity we

will work directly with Q, and take advantage of the fact that it is on a standardized

Q
WSS Total

Compare to chi-square
for test of significance

Q – df
WSS Excess

Variance of true effects

T 2 = (Q − df )/C

SD of true effects
T T 2=

True/total variance *
I 2 = T 2 / (T 2+ σ2)

Standardized
Units

Metric of
effect size

df
WSS Expected

* This is a conceptual definition,
   since σ2 will vary from study to
   study.

Excess/total dispersion

I 2 = (Q 2 − df )/Q

Figure 16.3 Flowchart showing how T 2 and I 2 are derived from Q and df.
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scale and is sensitive to the number of studies. To estimate the variance (and

standard deviation) of the true effects we will start with Q, remove the dependence

on the number of studies, and return to the original metric. These estimates are called

T2 and T. Finally, to estimate what proportion of the observed variance reflects real

differences among studies (rather than random error) we will start with Q, remove the

dependence on the number of studies, and express the result as a ratio (called I2).

Testing the assumption of homogeneity in effects
Researchers typically ask if the heterogeneity is statistically significant, and we can

use Q (and df) to address this question. Formally, we pose the null hypothesis that all

studies share a common effect size and then test this hypothesis. Under the null

hypothesis Q will follow a central chi-squared distribution with degrees of freedom

equal to k – 1, so we can report a p-value for any observed value of Q. Typically, we

set alpha at 0.10 or at 0.05, with a p-value less than alpha leading us to reject the

null, and conclude that the studies do not share a common effect size.

This test of significance, like all tests of significance, is sensitive both to the

magnitude of the effect (here, the excess dispersion) and the precision with which

this effect is estimated (here, based on the number of studies).

The impact of the excess dispersion on the p-value is evident if we compare plots A

versus B in Figure 16.4. These plots both have six studies, and as the excess dispersion

increases (Q moves from 3.00 in A to 12.00 in B) the p-value moves from 0.70 to 0.035.

Similarly, compare plots C and D, which both have twelve studies. As we move from

C to D, Q moves from 6.62 to 27.12 and the p-value moves from 0.830 to 0.004.

The impact of the number of studies is evident if we compare plots A versus C.

The two plots are essentially identical, except that A has six studies and C has twelve

studies with the same estimated value of between-studies variation (prior to being

truncated at zero). With the additional precision the p-value moves away from zero,

from 0.70 (for A) to 0.83 (for C).

Similarly, the impact of the number of studies is evident if we compare plots B versus D.

The two plots are essentially identical, except that (again) B has six studies and D has

twelve studies with the same estimated value of between-studies variation (T2 5 0.037).

With the additional precision the p-value moves towards zero, from 0.035 (for B) to 0.004

(for D).

Note that the p-value for the left-hand columns moved toward 1.0 as we added

studies, while the p-value for the left-hand columns moved toward 0.0 as we added

studies. At left, since Q is less than df the additional evidence strengthens the case

that the excess dispersion is zero, and moves the p-value towards 1.0. At right, since

Q exceeds df, the additional evidence strengthens the case that the excess dispersion

is not zero, and moves the p-value towards 0.0.

Concluding remarks about Q and its p-value
The test of the null hypothesis (that all studies share a common effect size) is subject

to the same caveats as all tests of significance, as follows.
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First, while a significant p-value provides evidence that the true effects vary, the

converse is not true. A nonsignificant p-value should not be taken as evidence that

the effect sizes are consistent, since the lack of significance may be due to low

power. With a small number of studies and/or large within-study variance (small

studies), even substantial between-studies dispersion might yield a nonsignificant

p-value.

Second, the Q statistic and p-value address only the test of significance and

should never be used as surrogates for the amount of true variance. A nonsignificant

p-value could reflect a trivial amount of observed dispersion, but could also reflect a

substantial amount of observed dispersion with imprecise studies. Similarly, a

significant p-value could reflect a substantial amount of observed dispersion, but

could also reflect a minor amount of observed dispersion with precise studies.

In sum, the purpose served by this test is to assess the viability of the null

hypothesis, and not to estimate the magnitude of the true dispersion. There are

several ways that we can describe the dispersion of true effect sizes, and we shall

deal with each of these in the balance of this chapter.

Q = 3.00

(Q–df) < 0

p = 0.70

Q = 12.00
(Q–df) = 7.00

p = 0.035

Q = 6.62
(Q–df) < 0
p = 0.83

Q = 27.12
(Q–df) = 16.13

p = 0.0044

0.0–1.0 1.0 0.0–1.0 1.0

0.0–1.0 1.0 0.0–1.0 1.0

A

C

B

D

T 2 = 0.00

I 2 = 0.00%

T = 0.00

T 2 = 0.00

I 2 = 0.00%

T = 0.00

T 2 = 0.037

I 2 = 59.45%

T = 0.193

T 2 = 0.037

I 2 = 58.34%

T = 0.193

Figure 16.4 Impact of Q and number of studies on the p-value.
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ESTIMATING t2

The parameter tau-squared (�2) is defined as the variance of the true effect sizes. In

other words, if we had an infinitely large sample of studies, each, itself, infinitely

large (so that the estimate in each study was the true effect) and computed the

variance of these effects, this variance would be �2.

Since we cannot observe the true effects we cannot compute this variance directly.

Rather, we estimate it from the observed effects, with the estimate denoted T2. To yield

this estimate we start with the difference (Q – df) which represents the dispersion in

true effects on a standardized scale. We divide by a quantity (C) which has the effect

of putting the measure back into its original metric and also of making it an average,

rather than a sum, of squared deviations. Concretely,

T2 5
Q� df

C
ð16:5Þ

where

C 5
X

Wi �
X

W2
iX

Wi

: ð16:6Þ

This means that T2 is in the same metric (squared) as the effect size itself, and also

reflects the absolute amount of variation in that scale.

While the actual variance of the true effects (�2) can never be less than zero, our

estimate of this value (T2) can be less than zero if, because of sampling error, the

observed variance is less than we would expect based on within-study error – in

other words, if Q< df. In this case, T2 is simply set to zero.

If Q> df then T2 will be positive, and it will be based on two factors. The first is

the amount of excess variation (Q – df), and the second is the metric of the effect size

index.

The impact of the excess variation on our estimate of T2 is evident if we compare

plots A versus B in Figure 16.5. The within-study error is smaller in B. Therefore,

while the observed variation is the same in both plots, a higher proportion of this

variation is assumed to be real in B. As we move from A to B, Q moves from 12.00 to

48.01, and T2 from 0.037 to 0.057.

The impact of the scale on our estimate of T2 is evident if we compare plots

C versus D in Figure 16.5. Q and df are the same in the two plots, which means that

the same proportion of the observed variance will be attributed to between-studies

variance. However, the absolute amount of the variance is larger in D, so this

proportion translates into a larger estimate of �2. As we move from C to D, T2

moves from 0.037 to 0.096.

Concluding remarks about T2

As our estimate for the variance of the true effects, T2 is used to assign weights

under the random-effects model, where the weight assigned to each study is
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W�i 5
1

VYi

� 5
1

VYi
þ T2

: ð16:7Þ

In words, the total variance for a study (VY*) is the sum of the within-study variance

(VY) and the between-studies variance, (T2).

This method of estimating the variance between studies is the most popular, and

is known as the method of moments or the DerSimonian and Laird method. This

method does not make any assumptions about the distribution of the random effects.

It also has the advantage of being the easiest to compute and the easiest to explain,

which makes it useful for a text. Alternatives exist, and some statisticians favor a

restricted maximum likelihood (REML) method.

Interestingly, one of the authors of the key DerSimonian and Laird paper has

since argued that the simple method we describe should no longer be used, since

computational simplicity is no longer an important consideration. However, we

believe that it is instructive to describe this simple method, and note that differences

in results from one method to the other are likely to be small. Formulas to compute

confidence intervals for T2 are presented at the end of this chapter.

Tau
Above, we discussed the variance of the true effect sizes, where �2 refers to the

actual variance and T2 is our estimate of this parameter. Now, we turn to the

standard deviation of the true effect sizes. Here, � refers to the actual standard

deviation and T is our estimate of this parameter.

Q = 12.00

(Q–df) = 7.00

Q = 48.01

(Q-df) = 43.01

P<0.001

Q = 12.00

(Q–df) = 7.00

p = 0.035

Q =12.00

Q–df = 7.00

p = 0.035

0.0–1.0 1.0 0.0–1.0 1.0

0.0–1.0 1.0 0.0–1.0 1.0

A

C

B

D

p = 0.035

T 2 = 0.037

T 2 = 0.037 T 2 = 0.096

T 2 = 0.057

I 2 = 58.34%

I 2 = 58.34% I 2 = 58.34%

T = 0.193

T = 0.193 T = 0.309

I 2 = 89.59%

T = 0.239

Figure 16.5 Impact of excess dispersion and absolute dispersion on T2.
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T, the estimate of the standard deviation, is simply the square root of T2,

T 5
ffiffiffiffiffi
T2
p

: ð16:8Þ

Like T 2, T is on the same scale as the effect size itself, but T 2 (a variance) is a

squared value, while T (a standard deviation) is not. Like the standard deviation in a

primary study, T can be used to describe the distribution of effect sizes about the

mean effect. If we are willing to assume that the effects are normally distributed

(and we have a reasonably precise estimate of T), we can get a sense for the range of

true effect sizes, and then consider the substantive implications of this range.

Figure 16.6 is identical to Figure 16.5 but this time we have added to each plot the

expected distribution of true effects, based on T. For example, in plot A the

summary effect is 0.41 and T is 0.193. We expect that some 95% of the true effects

will fall in the range of 0.41 plus or minus 1.96 T, or 0.04 to 0.79, and this is the

range reflected in the bell curve. The same approach is used to construct the curve

for all the plots.

Recall that plots A and B have the same observed variance, but differ in the

proportion of this variance that is attributed to real differences in effect size. In A,

the bell curve is relatively narrow, and captures only a fraction of the observed

Q = 12.00 Q = 48.01

(Q–df) = 7.00 (Q–df) = 43.01

p = 0.035 P < .001

0.0–1.0 1.0 0.0–1.0 1.0

A

C

B

D

1.00.0–1.0 –1.0 0.0 1.0

T 2
 = 0.037 T 2 = 0.057

I 2 = 58.34% I 2 = 89.59%

T = 0.193

Q = 12.00

(Q–df) = 7.00

p = 0.035

T 2 = 0.037

I 2 = 58.34%

T = 0.193

Q = 12.00

(Q–df) = 7.00

p = 0.035

T 2 = 0.096

I 2 = 58.34%

T = 0.309

T = 0.239

Figure 16.6 Impact of excess and absolute dispersion on T.
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dispersion – the rest is assumed to reflect error. In B, the bell curve is relatively

wide, and captures a larger fraction of the dispersion, since most of the dispersion is

here assumed to be real.

Similarly, recall that in plots C and D the ratio of true to observed variance is the

same, but the observed dispersion (the scale) is larger in D. The bell curve is wider in

D than in C (because of the different scale), but in both cases a comparable proportion

of the effects fall within the range of the curve (because the ratio is the same).

Concluding remarks about T
Our estimate T of the standard deviation of the true effects enables us to talk about

the substantive importance of the dispersion. Suppose an intervention has a sum-

mary effect size of 0.50. If T is 0.10, then most of the effects (95 %) fall in the

approximate range of 0.30 to 0.70. If T is 0.20 then most of the true effects fall in

the approximate range of 0.10 to 0.90. If T is 0.30 then most of the true effects fall in

the approximate range of �0.10 to þ1.10. We still need to attach a value judgment

to these ranges (what effect size is harmful, what effect size is trivial, what effect

size is useful), but by having a sense of the distribution we have at least a starting

point for these discussions.

In this example we assume that the effect size and T are estimated accurately.

In practice, if we wanted to make predictions about the distribution of true effects

we would need to take account of the error in estimating both of these values.

Toward the end of this chapter we show how to compute confidence intervals for the

value of T, and in Chapter 17 we show how to compute prediction intervals that take

account of these sources of error.

THE I 2 STATISTIC

The utility of T2and T lies in the fact that they are absolute measures, which means

that they quantify deviation on the same scale as the effect size index. In some cases,

however, we would prefer to think about heterogeneity independent of scale and ask

What proportion of the observed variance reflects real differences in effect size?

Higgins et al. (2003) proposed using a statistic, I2, to reflect this proportion, that

could serve as a kind of signal-to-noise ratio. It is computed as

I2 5
Q� df

Q

� �
� 100%; ð16:9Þ

that is, the ratio of excess dispersion to total dispersion. The statistic I2 can be

viewed as a statistic of the form

I2 5
Variancebet

Variancetotal

� �
� 100% 5

�2

�2 þ VY

� �
� 100%; ð16:10Þ

that is, the ratio of true heterogeneity to total variance across the observed

effect estimates. However, this is not a true definition of I2 because in reality
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there is not a single VY, since the within-study variances vary from study to study.

The I2 statistic is a descriptive statistic and not an estimate of any underlying

quantity.

To get a sense of the factors that control (and do not control) I2, consider Figure 16.7.

For any given df, I2 moves in tandem with Q. As such, it is driven entirely by the

ratio of observed dispersion to within-study dispersion. In the top row, both plots

A and B have a Q value of 12.00 with 5 degrees of freedom. Therefore, they both

have the same value of I2, 58.34%. The fact that A has a wider scale than B (which

yields a higher value of T2) does not impact on I2. Similarly, in the bottom row

both plots C and D have a Q value of 48.01 with 5 degrees of freedom, and

therefore both have the same I2, 89.59%. Again, the fact that C has a wider scale

than D does not impact on I2.

I2 reflects the extent of overlap of confidence intervals, which is not dependent on

the actual location or spread of the true effects. As such it is convenient to view I2 as

a measure of inconsistency across the findings of the studies, and not as a measure of

the real variation across the underlying true effects.

The scale of I2 has a range of 0–100%, regardless of the scale used for the meta-

analysis itself. It can be interpreted as a ratio, and has the additional advantage of

being analogous to indices used in psychometrics (where reliability is the ratio of

true to total variance) or regression (where R2 is the proportion of the total variance

that can be explained by the covariates). Importantly, I2 is not directly affected by

the number of studies in the analysis.

0.0–1.0 1.0 0.0–1.0 1.0

0.0–1.0 1.0 0.0–1.0 1.0

A

C

B

D

Q = 12.00

(Q–df) = 7.00

p = 0.035

T 2 = 0.037

I 2 = 58.34%

I 2 = 89.59%

T = 0.193

Q = 48.01

(Q–df) = 43.01

P < .001

T 2 = 0.229

T = 0.479

I 2 = 89.59%

Q = 48.01

(Q–df) = 43.01

P < 0 .001

T 2 = 0.057

T = 0.239

Q = 12.00

(Q–df) = 7.00

p = 0.035

T 2 = 0.006

I 2 = 58.34%

T = 0.077

Figure 16.7 Impact of excess dispersion on I2.
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Concluding remarks about l 2

The I2 index allows us to discuss the amount of variance on a relative scale.

For example, if we are planning to speculate about reasons for the variation,

we should first use I2 to determine what proportion of the observed variance is

real. If I2 is near zero, then almost all the observed variance is spurious, which

means that there is nothing to explain. By contrast, if I2 is large, then it would make

sense to speculate about reasons for the variance, and possibly to apply techniques

such as subgroup analysis or meta-regression to try and explain it. Formulas to

compute confidence intervals for I2 are presented at the end of this chapter.

Higgins et al. (2003) provide some tentative benchmarks for I2. They suggest that

values on the order of 25%, 50%, and 75% might be considered as low, moderate,

and high, respectively. Some context for the interpretation of I2 is provided by a

survey of meta-analyses of clinical trials in the Cochrane Database of Systematic

Reviews, reported by Higgins et al. (2003). The value of I2 was zero for about half

of the meta-analyses, and was distributed evenly between 0% to 100% for the other

half. It is likely that I2 would be distributed differently in meta-analyses of other

fields or other kinds of studies.

Note that the benchmarks (like the index itself) refer to the question of what

proportion of the observed variation is real, and not to the variation on an absolute

scale. An I2 value near 100% means only that most of the observed variance is real,

but does not imply that the effects are dispersed over a wide range (they could fall in

a narrow range but be estimated precisely). Nor does a low value of I2 imply that

the effect are clustered in a narrow range (the observed effects could vary across a

wide range, in studies with a lot of error). As such, I2 is not meant to address the

substantive implications of the dispersion.

COMPARING THE MEASURES OF HETEROGENEITY

We have described five ways of measuring heterogeneity, Q, p, T2, T, and I2.

Table 16.1 shows the relationship among these measures. Since all the indices are

based on Q (in relation to df), it follows that all will be low (or zero) if the total dispersion

is low relative to the error within studies, and higher if the total dispersion is high,

relative to the error within studies. However, the various measures of heterogeneity

build on this core in different ways which makes each useful for a specific purpose.

Table 16.1 Factors affecting measures of dispersion.

Range of possible values Depends on number of studies Depends on scale

Q 0 � Q 3

p 0 � p � 1 3

T 2 0 � T 2
3

T 0 � T 3

I 2 0% � I 2 < 100%
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Note that the estimates T2 and T are based on the excess dispersion, but the

population values (�2 and of �) are defined solely by the variance of the true effects.

� The Q statistic and its p-value serve as a test of significance. The qualities that

make these useful for this purpose are that they are sensitive to the number of

studies and they are not sensitive to the metric of the effect size index.

� Our estimate of �2 serves as the between-studies variance in the analysis and our

estimate of � serves as the standard deviation of the true effects. The qualities that

make these useful for this purpose are that they are sensitive to the metric of the

effect size, and they are not sensitive to the number of studies.

� I2 is the ratio of true heterogeneity to total variation in observed effects, a kind of

signal to noise ratio. The qualities that make it useful for this purpose are that it is not

sensitive to the metric of the effect size and it is not sensitive to the number of studies.

It is important to understand that T2 and T (on the one hand) and I2 (on the other)

serve two entirely different functions. The statistics T2 (and T) reflect the amount of

true heterogeneity (the variance or the standard deviation) while I2 reflects the

proportion of observed dispersion that is due to this heterogeneity. In a sense, if we

were to multiply the observed variance by I2, we would get T2 (this is meant as an

illustration only, since the actual computation is more complicated). As such, the

two tend to move in tandem, but have very different meanings.

I2 reflects only the proportion of variance that is true, and says nothing about the

absolute value of this variance. In Figure 16.8, plots A and B have the same value of

I2 (58.34%) but in A the true effects are clustered in a small range (T2 5 0.006) while

in B they are dispersed across a wider range (T2 5 0.037).

Conversely, T2 reflects only the absolute value of the true variance and says

nothing about the proportion of observed variance that is true. In Figure 16.9, T2 is

the same in both plots, but in A it is a large part (I2 5 58.34%) of a small observed

dispersion whereas in B it is a small part (I2 5 16.01%) of a large observed

dispersion.

Note also that T2 is tied to the effect size index while I2 is not. For example, T2 for

a synthesis of risk ratios will be in the metric of log risk ratios while T2 for a

0.0–1.0 1.0 0.0–1.0 1.0

A B
Q = 12.00

(Q–df) = 7.00

p = 0.035

T 2 = 0.006

I 2 = 58.34%

T = 0.077

Q = 12.00

(Q–df) = 7.00

p = 0.035

T 2 = 0.037

I 2 = 58.34%

T = 0.193

Figure 16.8 Factors affecting T 2 but not I 2.
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synthesis of standardized mean differences will be in the metric of standardized

mean differences. It would not be meaningful to compare the T2 values for two

syntheses unless they were in the same metric. By contrast, I2 is on a ratio scale of

0 % to 100 %, and it is possible to compare this value from different syntheses.

In context

It is common for researchers who perform a meta-analysis to ask whether or not the

effects are ‘heterogeneous’. As we have tried to show in this chapter, to report that

the data are, or are not, heterogeneous, is not terribly informative. We need to

consider what is meant by ‘heterogeneous’ and then respond with the relevant

statistics.

Researchers often focus their attention on the Q statistic and its p-value. A

significant Q conjures up images of effects that are widely dispersed and a non-

significant Q is taken as assurance that the effects are consistent. This use of Q is

clearly incorrect for two reasons. First, the Q-statistic and its p-value only address

the viability of the null hypothesis (Is the true dispersion exactly zero) and not the

amount of excess dispersion. Second, Q is sensitive to relative variance (the kind

tracked by I2) and not absolute variance (the kind tracked by T2 and T). These are

two very different aspects of heterogeneity with very different implications (see

below) and when a researcher reports Q alone, the consumer is not likely to make

this distinction.

Researchers may also report T2, since this is a key component in any random-

effects meta-analysis. However, because T2 is a variance (and reported in the

squared metric), it is not an intuitive measure. The problem of interpretation is

even worse when the index is on a log scale.

One way to think about the substantive implications of the dispersion is to think

about the range of effects, and how the utility of the intervention (or the importance

of the relationship) varies over this range. The index that addresses this issue is T.

Just as we might report the mean and standard deviation in a primary study to

describe the distribution of scores, we can report the summary effect and standard

0.0–1.0 1.0

A B

0.0–1.0 1.0

Q = 12.00

(Q–df) = 7.00

p = 0.035

T 2 = 0.037

I 2 = 58.34%

T = 0.193

Q = 5.95
(Q–df) = 0.95

P = 0 .312

T 2 = 0.037

I 2 = 16.01%

T = 0.192

Figure 16.9 Factors affecting I 2 but not T 2.
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deviation (that is, T) in a meta-analysis to describe the distribution of true effects.

For example, suppose that an effect size in the range of 0.0 to 0.20 would be

considered trivial, 0.20 to 0.50 would be considered moderate, and 0.50 or above

would be considered high. If the summary effect is 0.50 with a T of 0.10, most

effects will fall in the range of 0.30 to 0.70, all in the moderate to high range. By

contrast, if the summary effect is 0.50 with T of 0.20, some proportion of effects will

fall in the trivial range. This approach works equally well when the index is on a log

scale. Here, we compute the range of effects using this log scale, and then convert to

the natural units for reporting. (Note that these intervals ignore uncertainty in the

mean and in T. In Chapter 17 we describe a predictive interval that is more

appropriate for this purpose).

Another way to think about the substantive implications of the dispersion is to ask

what proportion of the observed variance is real. Faced with a forest plot of risk ratios

(for example) that range from 0.50 to 4.0, a researcher may be tempted to look for

covariates that can explain the mechanism responsible for this dispersion. Before

embarking on this quest, it makes sense to ask how much (if any) of this dispersion is

real. An I2 near zero tells us that almost all of the dispersion will be attributed to

random error, and any attempt to explain the variance is really an attempt to explain

something that is (by definition) random. By contrast, as I2 moves away from zero we

know that some of the variance is real and can potentially be explained by subgroup

analysis or meta-regression. These are the subjects of Chapters 19 to 21.

An informative presentation of heterogeneity indices requires both a measure of

the magnitude and a measure of uncertainty. Magnitude may be represented by the

degree of true variation on the scale of the effect measure (T2) or the degree of

inconsistency (I2), or both. Uncertainty over whether apparent heterogeneity is

genuine may be expressed using the p-value for Q or using confidence intervals

for T2 or I2.

Note that uncertainty around T2 or I2 is often very large. If the studies themselves

have poor precision (wide confidence intervals), this could mask the presence of

real (possibly substantively important) heterogeneity, resulting in an estimate of

zero for T2 and I2. Therefore, it would be a mistake to interpret a T2 or I2 of zero as

meaning that the effect sizes are consistent unless this is justified by confidence

intervals for T2 and I2 that exclude large values.

CONFIDENCE INTERVALS FOR t 2

If we assume that the effect sizes are normally distributed, the standard error of T2

may be estimated as follows.

First, compute

A 5 df þ 2 sw1� sw2

sw1

� �
�2 þ sw2� 2

sw3

sw1

� �
þ sw2ð Þ2

sw1ð Þ2

 !
�4

" #
; ð16:11Þ
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where

sw1 5
Xk
i 5 1

wi ;

sw2 5
Xn
i 5 1

w2
i ;

and

sw3 5
Xn
i 5 1

w3
i :

Then, the variance of T2 is

VT2 5 2� A

C2

� �
ð16:12Þ

and its standard error is given by

SET2 5
ffiffiffiffiffiffiffi
VT2

p
: ð16:13Þ

Because the distribution of T2 is not well approximated by a normal distribution,

computing the confidence interval as the estimate of �2 plus or minus two standard

errors will not yield very accurate confidence intervals unless the number of studies

is very large. There are several methods for obtaining a confidence interval for �2.

A simple method is as follows.

First, if Q> (df þ 1), compute

B 5 0:5� ln Qð Þ � ln dfð Þffiffiffiffiffiffi
2Q
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� df � 1
p ; ð16:14Þ

or if Q � (df þ 1), compute

B 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2� ðdf � 1Þ � 1� 1

3� ðdf � 1Þ2

� �� �
vuuut : ð16:15Þ

Then compute intermediate values

L 5 Exp 0:5� ln
Q

df

� �
� 1:96� B

� �
ð16:16Þ

and

U 5 Exp 0:5� ln
Q

df

� �
þ 1:96� B

� �
: ð16:17Þ
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Finally, the 95% confidence intervals for �2 may then be obtained as

LLT2 5
df � L2 � 1ð Þ

C
ð16:18Þ

and

ULT2 5
df � U2 � 1ð Þ

C
: ð16:19Þ

Any value (T2, lower limit or upper limit) that is computed as less than zero is set to

zero. If the lower limit exceeds zero, then T2 should be statistically significant.

However, since T2 is based on Q, and the sampling distribution of Q is better known,

the preferred method would be to test Q for significance, and use this as the test for

�2 being nonzero.

The 95% confidence interval for � may be obtained by taking the square roots of

the confidence limits for �2, namely

LLT 5
ffiffiffiffiffiffiffiffiffiffi
LLT2

p
and

ULT 5
ffiffiffiffiffiffiffiffiffiffiffi
ULT2

p
:

CONFIDENCE INTERVALS (OR UNCERTAINTY INTERVALS) FOR I 2

There are several methods for obtaining an interval to convey uncertainty in I2.

Because I2 does not estimate any underlying quantity, these intervals would be

better described as uncertainty intervals rather than confidence intervals. However,

we will continue to describe them as confidence intervals since the distinction is not

practically important. A simple method to obtain confidence intervals is as follows.

First, if Q> (df þ 1), compute

B 5 0:5� ln ðQÞ � ln ðdf Þffiffiffiffiffiffi
2Q
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� df � 1
p ; ð16:20Þ

or if Q � (df þ 1), compute

B 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2� ðdf � 1Þ � 1� 1

3� ðdf � 1Þ2

� �� �
vuuut : ð16:21Þ

Then

L 5 exp 0:5� ln
Q

df

� �
� 1:96� B

� �
ð16:22Þ

and

U 5 exp 0:5� ln
Q

df

� �
þ 1:96� B

� �
: ð16:23Þ
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The 95% confidence intervals may then be obtained as

LLI2 5
L2 � 1

L2

� �
� 100% ð16:24Þ

and

ULI2 5
U2 � 1

U2

� �
� 100%: ð16:25Þ

Any value (I2, lower limit or upper limit) that is computed as less than zero is set

to zero.

If the lower limit of I2 exceeds zero, then I2 should be statistically significant.

However, since I2 is based on Q, and the sampling distribution of Q is better known

than the sampling distribution of I2, the preferred method would be to test Q for

significance, and use this as the test for I2 being nonzero.

Worked examples for all of these computations are included in Chapter 18.

SUMMARY POINTS

� When we speak about dispersion in effect sizes from study to study we are

usually concerned with the dispersion in true effect sizes, but the observed

dispersion includes both true variance and random error.

� The mechanism used to isolate the true variance is to compare the observed

dispersion with the amount we would expect to see if all studies shared a

common effect size. The excess portion is assumed to reflect real differences

among studies. This portion of the variance is then used to create several

measures of heterogeneity.

� Q is the weighted sum of squares (WSS) on a standardized scale. As a standard

score it can be compared with the expected WSS (on the assumption that all

studies share a common effect) to yield a test of the null and also an estimate

of the excess variance.

� T2 is the variance of the true effects, on the same scale (squared) as the effects

themselves. This value is used to assign study weights under the random-

effects model.

� T is the standard deviation of the true effects, on the same scale as the effects

themselves. We can use this to estimate the distribution of true effects, and

consider the substantive implications of this distribution.

� I2 is the proportion of observed dispersion that is real, rather than spurious. It is

not dependent on the scale, and is expressed as a ratio with a range of 0% to

100%.
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CHAPTER 17

Prediction Intervals

Introduction
Prediction intervals in primary studies
Prediction intervals in meta-analysis
Confidence intervals and prediction intervals
Comparing the confidence interval with the prediction interval

INTRODUCTION

When we report the results of a meta-analysis we often focus on the summary effect

size and its confidence interval. These give us an estimate of the mean effect size

and its precision, but they say nothing about how the true effects are distributed

about the summary effect.

In a fixed-effect analysis this is appropriate, since we assume that the true effect is

the same in all studies. In a random-effects analysis, however, we need to consider

not only the mean effect size, but also how the true effects are distributed about this

mean. A mean effect size (say, a standardized mean difference) of 0.50 where all

true effects are clustered in the range of 0.40 to 0.60 may have very different

implications than the same mean effect where the true effects are scattered over

the range of 0.00 to 1.00.

Our goal in this chapter is to show how we can use a prediction interval to

describe the distribution of true effect sizes. We will review how the prediction

interval is used in primary studies, and then show how the same mechanism can be

used for meta-analysis.

PREDICTION INTERVALS IN PRIMARY STUDIES

Suppose we are interested in math scores for a population of children. We want to

create a prediction interval, defined as the interval within which a new student’s

score would fall if that student were selected at random from this population.

Introduction to Meta-Analysis.  Michael Borenstein, L. V. Hedges, J. P. T. Higgins and H. R. Rothstein  
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The 80% prediction interval would include that score 80% of the time, the 95%

interval would include that score 95% of the time, and so on. As such, the interval

yields an intuitive picture of the distribution of scores.

If we somehow knew the population mean (�) and standard deviation (�), and

were willing to assume that the scores are normally distributed, we could create a

prediction interval, using

LLpred 5�� Z�
ffiffiffiffiffi
�2
p

ð17:1Þ

and

ULpred 5�þ Z�
ffiffiffiffiffi
�2
p

; ð17:2Þ

where Za is the Z-value corresponding to the desired confidence level (for the 95 %

interval, Za would be 1.96). For example, if � is 0.50 and � is 0.10, then the lower

and upper limits of a 95% prediction interval are

LLpred 5 0:500� 1:96� 0:100 5 0:3040

and

ULpred 5 0:500þ 1:96� 0:100 5 0:6960:

Formulas (17.1) and (17.2) are intuitive but are not useful in practice because they

assume that we know both � and � exactly. When these values are estimated from

the sample (as they almost always are) we instead use the formulas

LLpred 5 X � t�df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ S2

n

r
ð17:3Þ

and

ULpred 5 X þ t�df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ S2

n

r
; ð17:4Þ

where X is the sample mean, t�df is the t-value corresponding to (for example if

�5 0.05) the 95% interval when there are df degrees of freedom, and S is the

standard deviation of scores in the sample. These formulas have the same structure

as (17.1) and (17.2) but to allow for error in the estimates of � and � they incorporate

the following changes. First, we multiply by t rather than Z. Second, t is multiplied

by a quantity that involves both the variance of the observations (the standard

deviation squared, or S2) and also the variance of the mean (the standard error

squared, or S2/n).

For example, if X 5 0.50, S 5 0.10 and n 5 30, then

LLpred 5 0:5000� 2:0452�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:10002 þ 0:10002

30

s
5 0:2921
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and

ULpred 5 0:5000þ 2:0452�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:10002 þ 0:10002

30

s
5 0:7079;

where a t-value of 2.045 corresponds to the t-value for alpha of 0.05 with 29 df. In

Excel, the function tinv(0.05,29) returns 2.0452.

Note that the prediction intervals based on the statistics (0.292 to 0.708) are wider

than those based on the parameters (0.304 to 0.696).

PREDICTION INTERVALS IN META-ANALYSIS

We can follow a similar approach in meta-analysis. If we somehow knew the mean

effect size (�) and the standard deviation of true effect sizes (�), and were willing to

assume that the effect sizes are normally distributed, we could create a prediction

interval using

LLpred 5�� Z�
ffiffiffiffiffi
�2
p

ð17:5Þ

and

ULpred 5�þ Z�
ffiffiffiffiffi
�2
p

: ð17:6Þ

This is similar to (17.1) and (17.2) except that �2, the variance of the true

effects in a meta-analysis, has replaced �2, the variance of the scores in a primary

study.

Actually, we introduced this idea in Chapter 16 when we discussed the inter-

pretation of T as an estimate of the standard deviation of true effect sizes. For

example, if � is 0.358 and �2 is 0.0373, then the 95% prediction interval is

LLpred 5 0:358� 1:96�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0373
p

5�0:0205

and

ULpred 5 0:358þ 1:96�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0373
p

5 0:7365:

In a forest plot we would typically use a simple line (from �0.020 to 0.737) to

represent the prediction interval, but in Figure 17.1 we use a bell curve to convey the

idea that the true effect sizes are expected to be normally distributed within this

range. Note that the bell curve has been truncated at either end (�0.020 and 0.737)

so that it covers 95% of expected true effects.

Formulas (17.5) and (17.6) assume that we actually know the values of � and � ,

and make no allowance for error in these estimates. Higgins et al. propose the

following formulas for computing a prediction interval when these values are

estimated from the sample. The formulas are

LLpred 5 M� � t�df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ VM�

p
ð17:7Þ
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and

ULpred 5 M� þ t�df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ VM�

p
; ð17:8Þ

where M* is the mean effect size in the sample, T2 is the sample estimate of the

variance of true effect sizes, and VM* is the variance of M*. The factor t is the t-value

corresponding to (for example if � 5 0.05) the 95% interval when there are

df degrees of freedom.

These formulas have the same structure as (17.5) and (17.6) but we multiply by the

t-value (rather than the Z-value) and apply this factor to a quantity that involves both

the variance of the true effects (T2) and the variance of the mean effect (VM*). The

degrees of freedom (df) is often taken as the number of studies minus 2 (that is, k�2).

0.0–1.0 –0.5 0.5 1.0 1.5–1.5

M = 0.358

T 2 = 0.037

T = 0.193

Figure 17.1 Prediction interval based on population parameters � and �2.

0.0–1.0 –0.5 0.5 1.0 1.5–1.5

M* = 0.358

T 2 = 0.037

T = 0.193

Figure 17.2 Prediction interval based on sample estimates M* and T2.
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For example, if k 5 6, M* 5 0.3582, T2 5 0.0373, and VM* 5 0.0111, then

LLpred 5 0:3582� 2:7764�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0373þ 0:0111
p

5�0:2525

and

ULpred 5 0:3582þ 2:7764�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0373þ 0:0111
p

5 0:9690:

The value 2.7764 is the t-value corresponding to alpha of 0.05 with 4 df. In Excel,

the function 5TINV(0.05,4) returns 2.7764.

Figure 17.2 is identical to Figure 17.1 except that this time the prediction interval

is based on the sample values M* and T2 rather than the population parameters� and �2.

Note that the bell curve is wider in Figure 17.2 (the 95% interval is �0.25 to þ0.97)

than in Figure 17.1 (where the interval was �0.02 to þ0.74) which reflects the

uncertainty in the estimates.

CONFIDENCE INTERVALS AND PREDICTION INTERVALS

Traditionally, the summary line in a forest plot uses a diamond to depict the mean effect

size (the center of the diamond) and its confidence interval (the width of the diamond).

Now, we want to add a visual indicator of the prediction interval, and we do so by

adding a horizontal line to either end of the diamond, as in Figure 17.3.

The meta-analysis line in the plot now shows two distinct items of information. First,

in 95% of cases the mean effect size falls inside the diamond. Second, in 95% of cases

the true effect in a new study will fall inside the horizontal lines. It is important to

understand that these two items address two distinct issues. The confidence interval

quantifies the accuracy of the mean, while the prediction interval addresses the actual

dispersion of effect sizes, and the two measures are not interchangeable.

0.0–1.0 –0.5 0.5 1.0 1.5–1.5

Figure 17.3 Simultaneous display of confidence interval and prediction interval.
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As always, how we choose to interpret the effects depends on our goals. We may

want to focus on the null effect. If the full diamond exceeds zero then we are 95%

certain that the mean effect size exceeds zero. If the full prediction interval exceeds

zero then the true effect in 95% of new studies will exceed zero.

Or, we may want to focus on a clinically important effect (say, a standardized

mean difference of 0.20). If the full diamond exceeds 0.20 then we are 95% certain

that the mean effect size exceeds 0.20. If the full prediction interval exceeds 0.20

then the true effect in 95 % of new studies will exceed 0.20.

COMPARING THE CONFIDENCE INTERVAL WITH THE PREDICTION INTERVAL

Earlier, we showed the computation of the prediction interval for a meta-analysis

with six studies. Suppose that the meta-analysis included more studies (24, 60, or

1002) with the same pattern as in the first six. In other words, we have the same

within-study error and the same pattern of dispersion but a more precise estimate of

the mean effect size and of the true between-studies dispersion.

In Figure 17.4 we illustrate what the confidence interval and the prediction

interval would be for these four hypothetical analyses. While the specific

pattern shown here is unique to this analysis, the general trend will apply to any

analysis.

With six studies the confidence interval (the diamond) is quite wide, but with 60

studies its width is cut by about half, and with 1002 studies its width is trivial. This

follows from the formula for a confidence interval, which is

CIM � 5 M�� Z
ffiffiffiffiffiffiffiffiffi
VM �
p

: ð17:9Þ

The confidence interval reflects only error (VM*), and so we see a consistent decline

in the confidence interval width as the number of studies goes from 6 to 1002. With

an infinite number of studies the error would approach zero, and so the width of the

confidence interval would approach zero.

0.0–1.0 –0.5 0.5 1.0 1.5–1.5

Number
of studies

6

24

60

1002

Figure 17.4 Impact of number of studies on confidence interval and prediction interval.
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By contrast, the width of the prediction interval (the line) drops sharply as the

number of studies goes from 6 to 24 but shows almost no change beyond that point.

This follows from the formula for a prediction interval, which is

PI 5 M�� t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ VM �

p
: ð17:10Þ

The interval is based on error in estimating the mean (VM*), which is dependent on

the number of studies. The interval is based also on the variance of the studies, T 2,

which is not affected by the number of studies. In this example, as the number of

studies increases from 6 to 24, VM* decreases and therefore the interval narrows.

Beyond that point the decrease in VM* is trivial (and T2 remains constant), so the

prediction interval shows little change. With an infinite number of studies, the

interval would approach � plus/minus 1.96 � .

SUMMARY POINTS

� For a random-effects analysis we want to know both the mean effect size and

also how the true effects are distributed about the mean.

� The precision of the mean is addressed by the confidence interval. Since the

confidence interval reflects only error of estimation of the mean, with an

infinite number of studies its width would approach zero.

� The distribution of true effect sizes is addressed by the prediction interval.

Since the prediction interval incorporates true dispersion as well as error, with

an infinite number of studies it will approach the actual dispersion of true

effect sizes.

� The summary effect in a forest plot has traditionally been represented by a

diamond which corresponds to the confidence interval. For random-effects

analyses we can modify this to display both the confidence interval and the

prediction interval.
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CHAPTER 18

Worked Examples (Part 2)

Introduction
Worked example for continuous data (Part 2)
Worked example for binary data (Part 2)
Worked example for correlational data (Part 2)

INTRODUCTION

In Chapter 14 we presented worked examples for computing a summary effect using

continuous binary, and correlational data. Here, we continue with the same three

data sets and show how to compute the measures of heterogeneity discussed in

Chapters 16 and 17.

These computations are also included in Excel spreadsheets that can be down-

loaded from the book’s web site.

WORKED EXAMPLE FOR CONTINUOUS DATA (PART 2)

On page 87 we showed how to compute the effect size and variance for each study.

Here, we proceed from that point.

Using results in Table 18.1, the summary effect is given by

M 5
101:171

244:215
5 0:4143;

which value is used in the column labeled Mean in Table 18.2.

Then, using (16.1) we sum the values in the final column of Table 18.2,

Q 5
Xk

i 5 1

Wi Yi �Mð Þ2 5 12:0033:

Introduction to Meta-Analysis.  Michael Borenstein, L. V. Hedges, J. P. T. Higgins and H. R. Rothstein  
© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-05724-7



Table 18.1 Dataset 1 – Part D (intermediate computations).

Study Effect Variance Weight Calculated quantities

Y VY W WY WY 2 W 2 W 3

Carroll 0.095 0.033 30.352 2.869 0.271 921.21 27960.25
Grant 0.277 0.031 32.568 9.033 2.505 1060.68 34544.41
Peck 0.367 0.050 20.048 7.349 2.694 401.93 8058.00
Donat 0.664 0.011 95.111 63.190 41.983 9046.01 860371.10
Stewart 0.462 0.043 23.439 10.824 4.999 549.37 12876.47
Young 0.185 0.023 42.698 7.906 1.464 1823.12 77843.29

Sum 244.215 101.171 53.915 13802.33 1021653.52

Table 18.2 Dataset 1 – Part E (variance computations).

Study Effect Variance Weight Mean Calculated Quantities

Y VY W M (Y�M )2 W(Y�M )2

Carroll 0.095 0.033 30.352 0.414 0.102 3.103
Grant 0.277 0.031 32.568 0.414 0.019 0.610
Peck 0.367 0.050 20.048 0.414 0.002 0.046
Donat 0.664 0.011 95.111 0.414 0.063 5.950
Stewart 0.462 0.043 23.439 0.414 0.002 0.053
Young 0.185 0.023 42.698 0.414 0.052 2.241

Sum 12.003

Hedges’g (Random effects)

0.0–1.0 –0.5 0.5 1.0

Carroll

Grant

Peck

Donat

Stewart

Young

Summary

0.10

0.28

0.37

0.66

0.46

0.19

0.34

Std Diff
(g)

16%

16%

13%

23%

14%

18%

100%

Relative
Weight

Standardized mean difference (g) with
95% confidence and prediction intervals

Figure 18.1 Forest plot of Dataset 1 – random-effects weights with prediction interval.
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Or, using (12.3) and results in Table18.1,

Q 5 53:915� 101:171ð Þ2

244:215
5 12:0033:

Under the assumption that all studies share a common effect, the expected value of

Q is given by

df 5 6� 1 5 5

where k is the number of studies. The difference,

12:003� 5 5 7:0033;

is the excess value which we attribute to differences in the true effect sizes.

The p-value for Q 5 12.003 with df 5 5, is 0.035. In Excel, the function

5CHIDIST(12.003,5) returns 0.035. If we are using 0.10 or 0.05 as the criterion

for statistical significance, we would reject the null hypothesis that all the studies

share a common effect size, and accept the alternative, that the true effect is not the

same in all studies.

Then, using formulas (16.6), (16.5), (16.8), and (16.9),

C 5 244:215� 13802:33

244:215

� �
5 187:6978;

T2 5
12:003� 5

187:698
5 0:0373;

T 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0373
p

5 0:1932;

and

I2 5
12:003� 5

12:003

� �
� 100% 5 58:34%:

To compute the standard error of T2 (from (16.11) to (16.13)), we have

sw1 5 244.215, sw2 5 13,802.33, and sw3 5 1,021,653.52, so that

A 5 df þ2 244�13802

244

� �
0:0373þ 13802�2

1021653

244

� �
þ 13802ð Þ2

244ð Þ2

 !
0:03732

" #

531:0202:

Then, the variance of T2 is

VT2 5 2� 31:020

187:6982

� �
5 0:0018;

and its standard error is given by

SET2 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0018
p

5 0:0420:
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Since Q 5 12.003> 6 5 (df þ 1), we compute, from (16.14) to (16.19),

B 5 0:5� ln 12:0033ð Þ � ln 5ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 12:0033
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 5� 1
p 5 0:2305:

Then compute intermediate values

L 5 Exp 0:5� ln
12:003

5

� �
� 1:96� 0:2305

� �
5 0:9862

and

U 5 Exp 0:5� ln
12:003

5

� �
þ 1:96� 0:2305

� �
5 2:4343:

Finally, the 95% confidence intervals for �2 may be obtained as

LLT2 5
5� 0:98622 � 1

� �
187:698

5�0:0007;

which is set to zero, and

ULT2 5
5� 2:43432 � 1

� �
187:698

5 0:1312:

The 95% confidence interval for � may be obtained by taking the square roots of the

confidence limits for �2, namely

LLT 5
ffiffiffiffiffiffiffi
0:0
p

5 0:0;

and

ULT 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1312
p

5 0:3622:

Confidence intervals for I 2

Since 12.003> (5 þ 1) we compute, using formulas (16.20) through (16.25),

B 5 0:5� ln ð12:003Þ � ln ð5Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 12:003
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 5� 1
p 5 0:2305:

Compute intermediate values

L 5 exp 0:5� ln
12:003

5

� �
� 1:96� 0:2305

� �
5 0:9862

and

U 5 exp 0:5� ln
12:003

5

� �
þ 1:96� 0:2305

� �
5 2:4343:
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The 95% confidence intervals may then be obtained as

LLI2 5
0:98622 � 1

0:98622

� �
� 100% 5�2:82%;

which is set to zero, and

ULI2 5
2:43432 � 1

2:43432

� �
� 100% 5 83:12:%:

To obtain a 95% predictive interval for the true standardized mean difference in a

future study, we use the random-effects weighted mean and its variance computed in

(14.1) and (14.2), M* 5 0.3582 and VM* 5 0.0111 and compute, from (17.7) and

(17.8),

t0:05
4 5 2:7764;

LLpred 5 0:3582� 2:7764�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0373þ 0:0111
p

5�0:2525;

and

ULpred 5 0:3582þ 2:7764�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0373þ 0:0111
p

5 0:9690:

This prediction interval is plotted is in Figure 18.1.

WORKED EXAMPLE FOR BINARY DATA (PART 2)

On page 92 we showed how to compute the effect size (here, the log odds ratio) and

variance for each study. Here, we proceed from that point.

Using results in Table 18.3, the summary effect is given by

M 5
�30:594

42:248
5�0:7241;

which value is used in the column labeled Mean in Table 18.4.

Then, using (16.1) we sum the values in the final column of Table 18.4,

Q 5
Xk

i 5 1

Wi Yi �Mð Þ2 5 10:5512:

Or, using (12.3) and results in Table 18.3,

Q 5 32:705� �30:594ð Þ2

42:248
5 10:5512:
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Table 18.4 Dataset 2 – Part E (variance computations).

Study Effect Variance Weight Mean Calculated Quantities

Y VY W M (Y�M )2 W (Y�M )2

Saint �0.366 0.185 5.402 �0.724 0.128 0.692
Kelly �0.288 0.290 3.453 �0.724 0.191 0.658
Pilbeam �0.384 0.156 6.427 �0.724 0.116 0.743
Lane �1.322 0.058 17.155 �0.724 0.357 6.127
Wright �0.417 0.282 3.551 �0.724 0.094 0.335
Day �0.159 0.160 6.260 �0.724 0.319 1.996

Sum 10.551

Saint

Kelly

Pilbeam

Lane

Wright

Day

Summary

0.69

0.75

0.68

0.27

0.66

0.85

0.57

Odds
Ratio

Relative
Weight

Odds ratio with
95% confidence and prediction intervals

Odds ratio (Random effects)

0.00.20 0.50 2.0 5.0

15%

12%

17%

25%

13%

17%

100%

Figure 18.2 Forest plot of Dataset 2 – random-effects weights with prediction interval.

Table 18.3 Dataset 2 – Part D (intermediate computations).

Study Effect Variance Weight Calculated quantities

Y VY W WY WY 2 W 2 W 3

Saint �0.366 0.185 5.402 �1.978 0.724 29.18 157.66
Kelly �0.288 0.290 3.453 �0.993 0.286 11.92 41.18
Pilbeam �0.384 0.156 6.427 �2.469 0.948 41.30 265.42
Lane �1.322 0.058 17.155 �22.675 29.971 294.30 5048.71
Wright �0.417 0.282 3.551 �1.480 0.617 12.61 44.76
Day �0.159 0.160 6.260 �0.998 0.159 39.19 245.33

Sum 42.248 �30.594 32.705 428.50 5803.06
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Under the assumption that all studies share a common effect, the expected value of

Q is given by

df 5 6� 1 5 5;

where k is the number of studies. The difference,

10:5512� 5 5 5:5512

is the excess value which we attribute to differences in the true effect sizes.

The p-value for Q 5 10.551 with df 5 5, is 0.0610. In Excel, the function

5CHIDIST(10.551,5) returns0.0610. Ifweare using 0.10 as the criterion for statistical

significance, we would reject the null hypothesis that all the studies share a common

effect size, and accept the alternative, that the true effect is not the same in all studies. If

we are using 0.05 as the criterion, we would not have sufficient evidence to reject the

null (but would not conclude that the effects are homogeneous, since the nonsignificant

p-value could be due to inadequate statistical power).

Then, using formulas (16.6), (16.5), (16.8), and (16.9),

C 5 42:248� 428:50

42:248

� �
5 32:1052;

T2 5
10:5512� 5

32:1052
5 0:1729;

T 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1729
p

5 0:4158;

and

I2 5
10:5512� 5

10:5512

� �
� 100 5 52:61%:

To compute the standard error of T2 (from (16.11) to (16.13)), we have sw1 5 42.25,

sw2 5 428.5, and sw3 5 5,803.1, so that

A 5
df þ 2 42:25� 428:5

42:25

� �
0:1729þ 428:5� 2

5803:1

42:25

� �
þ 428:5ð Þ2

42:25ð Þ2

 !
0:17292

" #
5 23:7754:

Then, the variance of T2 is

VT2 5 2� 23:7754

32:10522

� �
5 0:0461

and its standard error is given by

SET2 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0461
p

5 0:2148:
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Since Q 5 10.5512 > 6 5 (df þ 1), we compute, from (16.14) to (16.19),

B 5 0:5� ln 10:5512ð Þ � ln 5ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 10:5512
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 5� 1
p 5 0:2343:

Then compute intermediate values

L 5 Exp 0:5� ln
10:5512

5

� �
� 1:96� 0:2343

� �
5 0:9178

and

U 5 Exp 0:5� ln
10:5512

5

� �
þ 1:96� 0:2343

� �
5 2:2993:

Finally, the 95% confidence intervals for �2 may then be obtained as

LLT2 5
5� 0:91782 � 1

� �
32:1052

5�0:0246;

which is set to zero, and

ULT2 5
5� 2:29932 � 1

� �
32:1052

5 0:6676:

The 95% confidence interval for � may be obtained by taking the square roots of the

confidence limits for �2, namely

LLT 5
ffiffiffiffiffiffiffi
0:0
p

5 0:0;

and

ULT 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:6676
p

5 0:8171:

Confidence intervals for I 2

Since 10.5512 > (5 þ 1) we compute, using formulas (16.20) through (16.25),

B 5 0:5� ln 10:5512ð Þ � ln 5ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 10:5512
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 5� 1
p 5 0:2343;

then compute intermediate values

L 5 Exp 0:5� ln
10:5512

5

� �
� 1:96� 0:2343

� �
5 0:9178

and

U 5 Exp 0:5� ln
10:5512

5

� �
þ 1:96� 0:2343

� �
5 2:2993:
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The 95% confidence intervals may then be obtained as

LLI2 5
0:91782 � 1

0:91782

� �
� 100% 5�18:72%;

which is set to zero, and

ULI2 5
2:29932 � 1

2:29932

� �
� 100% 5 81:09%:

To obtain a 95% predictive interval for the true log odds ratio in a future study, we

use the random-effects weighted mean and its variance computed in (14.3) and

(14.4), M* 5�0.5663 and VM* 5 0.0570 and compute, from (17.7) and (17.8),

t0:05
4 5 2:7764;

LLpred 5�0:5663� 2:7764�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1729þ 0:0570
p

5�1:8977;

and

ULpred 5�0:5663þ 2:7764�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1729þ 0:0570
p

5 0:7651:

These limits are computed on a log scale. We can convert the limits to the odds ratio

scale using

LLpred 5 expð�1:8977Þ5 0:1499

and

ULpred 5 expð0:7651Þ5 2:1492:

This prediction interval is plotted in Figure 18.2.

WORKED EXAMPLE FOR CORRELATIONAL DATA (PART 2)

On page 97 we showed how to compute the effect size (here, the Fisher’s z

transformation of the correlation coefficient) and variance for each study. Here,

we proceed from that point.

Using results in Table 18.5, the summary effect is given by

M 5
242:650

647:000
5 0:3750;

which value is used in the column labeled Mean in Table 18.6.

Then, using (16.1) we sum the values in the final column of Table 18.6,

Q 5
Xk

i 5 1

Wi Yi �Mð Þ2 5 36:1437:

Or, using (12.3) and results in Table 18.5,

Q 5 127:147� 242:650ð Þ2

647:000
5 36:1437:
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Table 18.6 Dataset 3 – Part E (variance computations).

Study Effect Variance Weight Mean Calculated Quantities

Y VY W M (Y�M )2 W (Y�M )2

Fonda 0.549 0.027 37.000 0.375 0.030 1.124
Newman 0.693 0.011 87.000 0.375 0.101 8.804
Grant 0.424 0.045 22.000 0.375 0.002 0.052
Granger 0.203 0.003 397.000 0.375 0.030 11.787
Milland 0.867 0.018 57.000 0.375 0.242 13.812
Finch 0.485 0.021 47.000 0.375 0.012 0.565

Sum 36.144

Table 18.5 Dataset 3 – Part D (intermediate computations).

Study Effect Variance Weight Calculated quantities

Y VY W WY WY 2 W 2 W 3

Fonda 0.549 0.027 37.000 20.324 11.164 1369.00 50653.00
Newman 0.693 0.011 87.000 60.304 41.799 7569.00 658503.00
Grant 0.424 0.045 22.000 9.320 3.949 484.00 10648.00
Granger 0.203 0.003 397.000 80.485 16.317 157609.00 62570773.00
Milland 0.867 0.018 57.000 49.436 42.876 3249.00 185193.00
Finch 0.485 0.021 47.000 22.781 11.042 2209.00 103823.00

Sum 647.000 242.650 127.147 172489.00 63579593.00
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Summary

0.50
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Figure 18.3 Forest plot of Dataset 3 – random-effects weights with prediction interval.
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Under the assumption that all studies share a common effect, the expected value of

Q is given by

df 5 6� 1 5 5;

where k is the number of studies. The difference,

36:1437� 5 5 31:1437;

is the excess value which we attribute to differences in the true effect sizes.

The p-value for Q 5 36.1437 with df 5 5, is less than 0.0001. In Excel, the

function 5CHIDIST(36.1437,5) returns < 0.0001. If we are using 0.10 or 0.05 as

the criterion for statistical significance, we would reject the null hypothesis that all

the studies share a common effect size, and accept the alternative, that the true effect

is not the same in all studies.

Then, using formulas (16.6), (16.5), (16.8), and (16.9),

C 5 647:000� 172489:00

647:000

� �
5 380:4019;

T2 5
36:1437� 5

380:4019
5 0:0819;

T 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0819
p

5 0:28613;

and

I2 5
36:1437� 5

36:1437

� �
� 100 5 86:17%:

To compute the standard error of T2 (from (16.11) to (16.13)), we have sw1 5

647.00, sw2 5 172489.00, and sw3 5 63,579,593.00, so that

A 5

�
df þ 2 647:00� 172489

647:00

� �
0:0819

þ 172489� 2
63579593

647:00

� �
þ 172489ð Þ2

647:00ð Þ2

 !
0:08192

�
5 382:4983:

Then, the variance of T2 is

VT2 5 2� 382:4983

380:40192

� �
5 0:0053;

and its standard error is given by

SET2 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0053
p

5 0:0727:
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Since Q 5 36.1437 > 6 5 (df þ 1), we compute, from (16.14) to (16.19),

B 5 0:5� ln 36:1437ð Þ � ln 5ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 36:1437
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 5� 1
p 5 0:1798:

Then compute intermediate values

L 5 Exp 0:5� ln
36:1437

5

� �
� 1:96� 0:1798

� �
5 1:8903

and

U 5 Exp 0:5� ln
36:1437

5

� �
þ 1:96� 0:1798

� �
5 3:8242:

Finally, the 95% confidence intervals for �2 may then be obtained as

LLT2 5
5� 1:8902 � 1

� �
380:4019

5 0:0338

and

ULT2 5
5� 3:82422 � 1

� �
380:4019

5 0:1791:

The 95% confidence interval for � may be obtained by taking the square roots of the

confidence limits for �2, namely

LLT 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0338
p

5 0:1839;

and

ULT 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1791
p

5 0:4232:

Confidence intervals for I 2

Since Q 5 36.1437 > 6 5 (df þ 1), we compute, from (16.20),

B 5 0:5� ln 36:1437ð Þ � ln 5ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 36:1437
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 5� 1
p 5 0:1798;

then compute intermediate values

L 5 Exp 0:5� ln
36:1437

5

� �
� 1:96� 0:1798

� �
5 1:8903

and
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U 5 Exp 0:5� ln
36:1437

5

� �
þ 1:96� 0:1798

� �
5 3:8242:

The 95% confidence intervals may then be obtained as

LLI2 5
1:89032 � 1

1:89032

� �
� 100% 5 72:01%;

and

ULI2 5
3:82412 � 1

3:82412

� �
� 100% 5 93:16%:

To obtain a 95% predictive interval for the true Fisher’s z in a future study, we use

the random-effects weighted mean and its variance computed in (14.5) and (14.6),

M* 5 0.5328 and VM* 5 0.0168 and compute, from (17.7) and (17.8),

t0:05
4 5 2:7764;

LLpred 5 0:5328� 2:7764�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0819þ 0:0168
p

5�0:3396;

and

ULpred 5 0:5328þ 2:7764�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0819þ 0:0168
p

5 1:4051:

These limits are in the Fisher’s z metric. We can convert the limits to the correlation

scale using

LLpred 5
e 2��0:3396ð Þ � 1

e 2��0:3396ð Þ þ 1
5�0:3271

and

ULpred 5
e 2�1:4051ð Þ � 1

e 2�1:4051ð Þ þ 1
5 0:8865:

This prediction interval is plotted in Figure 18.3.

SUMMARY POINTS

� This chapter includes worked examples showing how to compute the sum-

mary effect using fixed-effect and random-effects models.

� For the standardized mean difference we work with the effect sizes directly.

� For ratios we work with the log transformed data.

� For correlations we work with the Fisher’s z transformed data.

� These worked examples are available as Excel files on the book’s web site.
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CHAPTER 19

Subgroup Analyses

Introduction
Fixed-effect model within subgroups
Computational models
Random effects with separate estimates of � 2

Random effects with pooled estimate of � 2

The proportion of variance explained
Mixed-effects model
Obtaining an overall effect in the presence of subgroups

INTRODUCTION

To this point our focus has been primarily on estimating the mean effect, and in that

context variation in effect sizes served primarily to qualify the mean effect. For

example, we used the variation to assign weights for computing the mean effect, and

to make projections about the distribution of true effect sizes about the mean effect.

Now, our focus shifts from the mean effect to the variation itself. In this chapter we

show how meta-analysis can be used to compare the mean effect for different

subgroups of studies (akin to analysis of variance in a primary study). In the next

chapter we show how meta-analysis can be used to assess the relationship between

study-level covariates and effect size (akin to multiple regression in primary studies).

Consider the following examples.

� We anticipate that a class of drugs reduces the risk of death in patients with cardiac

arrhythmia, but we hypothesize that the magnitude of the effect depends on whether

the condition is acute or chronic. We want to determine whether the drug is effective

for each kind of patient, and also to determine whether the effect differs in the two.

� Our meta-analysis includes 10 studies that used proper randomization techniques

and 10 that did not. Before computing a summary effect across all 20 studies we

want to compute the effect for each group of 10, and determine if the effect size is

related to the kind of randomization employed in the study.

Introduction to Meta-Analysis.  Michael Borenstein, L. V. Hedges, J. P. T. Higgins and H. R. Rothstein  
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� We anticipate that forest management reduces the destruction of tree stands

by insect pests, but we hypothesize that the magnitude of the effect depends on

the diversity of trees in the stand. We want to determine whether

forest management is effective in reducing destruction for both single

species and mixed stands, and also to determine whether the effect differs in

the two.

� We have data from ten studies that looked at the impact of tutoring on math scores

of ninth-grade students. Five of the studies used one variant of the intervention

while five used another variant. We anticipate that both variants are effective, and

our primary goal in the analysis is to determine whether one is more effective than

the other.

We shall pursue the last of these examples (the impact of tutoring on math)

throughout this chapter. The effect size in this example is the standardized mean

difference between groups (Hedges’ g) but the same formulas would apply for any

effect size index. As always, if we were working with odds ratios or risk ratios all

values would be in log units, and if we were working with correlations all values

would be in Fisher’s z units.

Assume all the studies used the same design, with some students assigned to be

tutored and others to a control condition. In some studies (here called A) students

were tutored once a week while in the others (B) students were tutored twice a week.

Our goal is to compare the impact of the two protocols to see if either intervention is

more effective than the other.

Note. In this example we will be comparing the effect in one subgroup of studies

versus the effect in a second subgroup of studies. The ideal scenario would be to

have studies that directly compare the two variants of the intervention, since this

would remove the potential for confounds and also reduce the error term. We

assume that such studies are not available to us.

How this chapter is organized

We present three computational models. These are (a) fixed-effect, (b) random-

effects using separate estimates of �2, and (c) random-effects using a pooled

estimate of �2.

For each of the three models we present three methods for comparing the

subgroups. These are (1) the Z-test, (2) a Q-test based on analysis of variance, and

(3) a Q-test for heterogeneity.

The three statistical models, crossed with the three computational methods, yield

a total of nine possible combinations. These are shown in Box 19.1, which serves as

a roadmap for this chapter. Readers who want to get a sense of the issues quickly

may find it easier to read the introduction and method 1 for each model, and return

later to methods 2 and 3.

The dataset and all computations are available on the book’s web site.
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FIXED-EFFECT MODEL WITHIN SUBGROUPS

A forest plot of the Tutoring studies is shown in Figure 19.1. The five A studies (at the

top) have effect sizes (Hedges’ g) in the approximate range of 0.10 to 0.50. The five B

studies (below) have effect sizes in the approximate range of 0.45 to 0.75.

The combined effect for the A studies (represented by the first diamond) is

0.32 with a 95% confidence interval of plus/minus 0.11. The combined effect for

the B studies (represented by the second diamond) is 0.61 with a 95% confidence

interval of plus/minus 0.12. Our goal, then, is to compare these two effects.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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B 0.0030.611

A 0.0030.324

Hedges’ g and 95% confidence interval

Figure 19.1 Fixed-effect model – studies and subgroup effects.

BOX 19.1 ROADMAP

Introduction Method 1 Method 2 Method 3

Model Z-test Q -test based
on ANOVA

Q-test for
heterogeneity

Fixed-effect Page 151 Page 156 Page 157 Page 158
Random-effects with

separate estimates of �2
Page 164 Page 167 Page 169 Page 170

Random-effects with
pooled estimate of �2

Page 171 Page 176 Page 177 Page 178
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If we were working with a primary study (with Thornhill, Kendall, etc. being

persons in treatment A, and Jeffries, Fremont, etc. being persons in treatment B), we

would compute the mean and variance for each treatment, and our options for

comparing these means would be clear. For example, we could perform a t-test to

assess the difference between means relative to the standard error of the difference.

Or, we could use analysis of variance to assess the variance among groups means

relative to the variance within groups.

In meta-analysis we are working with subgroups of studies rather than groups of

subjects, but will follow essentially the same approach, using a variant of the t-test

or a variant of analysis of variance to compare the subgroup means. For this purpose

we need to perform two tasks.

� Compute the mean effect and variance for each subgroup.

� Compare the mean effect across subgroups.

Computing the summary effects

In Table 19.1 the data for the A studies are displayed at the top, and data for the B

studies are displayed toward the bottom.

To compute the summary effects we use the same formulas that we introduced

for a single group (11.2) to (11.10). The summary effect for subgroup A is computed

using values from the row marked Sum A. The summary effect for subgroup B is

computed using values from the row marked Sum B. The summary effect for all

studies is computed using values from the row marked Sum.

Table 19.1 Fixed effect model – computations.

Study
Effect
size

Y

Variance
Within

VY

Variance
Between

T
2

Variance
Total

V

Weight

W

Calculated quantities

WY WY 2 W 2

A

Thornhill 0.110 0.0100 0.0000 0.0100 100.000 11.000 1.210 10000.000
Kendall 0.224 0.0300 0.0000 0.0300 33.333 7.467 1.673 1111.111
Vandamm 0.338 0.0200 0.0000 0.0200 50.000 16.900 5.712 2500.000
Leonard 0.451 0.0150 0.0000 0.0150 66.667 30.067 13.560 4444.444
Professor 0.480 0.0100 0.0000 0.0100 100.000 48.000 23.040 10000.000

Sum A 350.000 113.433 45.195 28055.556

B

Jefferies 0.440 0.0150 0.0000 0.0150 66.667 29.333 12.907 4444.444
Fremont 0.492 0.0200 0.0000 0.0200 50.000 24.600 12.103 2500.000
Doyle 0.651 0.0150 0.0000 0.0150 66.667 43.400 28.253 4444.444
Stella 0.710 0.0250 0.0000 0.0250 40.000 28.400 20.164 1600.000
Thorwald 0.740 0.0120 0.0000 0.0120 83.333 61.667 45.633 6944.444

Sum B 306.667 187.400 119.061 19933.333

Sum 656.667 300.833 164.255 47988.889
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Computations (fixed effect) for the A studies

MA 5
113:433

350:000
5 0:3241;

VMA
5

1

350:000
5 0:0029;

SEMA
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0029
p

5 0:0535;

LLMA
5 0:3241� 1:96� 0:0535 5 0:2193;

ULMA
5 0:3241þ 1:96� 0:0535 5 0:4289;

ZA 5
0:3241

0:0535
5 6:0633;

pðZAÞ < 0:0001;

QA 5 45:195� 113:4332

350:000

� �
5 8:4316 ð19:1Þ

pðQ 5 8:4316; df 5 4Þ5 0:0770;

CA 5 350:000� 28055:556

350:000
5 269:8413;

T2
A 5

8:4316� 4

269:8413
5 0:0164;

and

I2
A 5

8:4316� 4

8:4316

� �
� 100 5 52:5594:

Computations (fixed effect) for the B studies

MB 5
187:400

306:667
5 0:6111;

VMB
5

1

306:667
5 0:0033;

SEMB
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0033
p

5 0:0571;

LLMB
5 0:6111� 1:96� 0:0571 5 0:4992;
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ULMB
5 0:6111þ 1:96� 0:0571 5 0:7230;

ZB 5
0:6111

0:0571
5 10:7013;

pðZBÞ < 0:0001;

QB 5 119:011� 187:4002

306:667

� �
5 4:5429; ð19:2Þ

pðQ 5 4:5429; df 5 4Þ5 0:3375;

CB 5 306:667� 19933:333

306:667
5 241:667;

T2
B 5

4:5429� 4

241:667
5 0:0022;

and

I2
B 5

4:5429� 4

4:5429

� �
� 100 5 11:9506:

Computations (fixed effect) for all ten studies

M 5
300:833

656:667
5 0:4581; ð19:3Þ

VM 5
1

656:667
5 0:0015; ð19:4Þ

SEM 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0015
p

5 0:0390;

LLM 5 0:4581� 1:96� 0:0390 5 0:3816;

ULM 5 0:4581þ 1:96� 0:0390 5 0:5346;

Z 5
0:4581

0:0390
5 11:7396;

pðZÞ < 0:0001;

Q 5 164:255� 300:8332

656:667

� �
5 26:4371; ð19:5Þ

pðQ 5 26:4371; df 5 9Þ5 0:0017;
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C 5 656:667� 47988:889

656:667
5 583:5871;

T2 5
26:4371� 9

538:5871
5 0:0299;

and

I2 5
26:4371� 9

26:4371

� �
� 100 5 65:96:

The statistics computed above are summarized in Table 19.2.

Comparing the effects

If we return to Figure 19.1 and excerpt the diamonds for the two subgroups we get

Figure 19.2. The mean effect size for subgroups A and B are 0.324 and 0.611, with

variances of 0.003 and 0.003.

Table 19.2 Fixed-effect model – summary statistics.

A B Combined

Y 0.3241 0.6111 0.4581
V 0.0029 0.0033 0.0015
SEY 0.0535 0.0571 0.0390
LLY 0.2193 0.4992 0.3816
ULY 0.4289 0.7230 0.5346
Z 6.0633 10.7013 11.7396
p2 0.0000 0.0000 0.0000

Q 8.4316 4.5429 26.4371
df 4.0000 4.0000 9.0000
p-value 0.0770 0.3375 0.0017
Numerator 4.4316 0.5429 17.4371
C 269.8413 241.6667 583.5871
T 2 0.0164 0.0022 0.0299
I 2 52.5594 11.9506 65.9569

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Subgroup Varianceg

B 0.0030.611

A 0.0030.324

Hedges’ g and 95% confidence interval

Figure 19.2 Fixed-effect – subgroup effects.
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Our goal is to compare these two mean effects, and we describe three ways that

we can proceed. These approaches are algebraically equivalent, and (it follows)

yield the same p-value. Our goal in presenting three approaches is to provide insight

into the process.

Comparing A versus B : a Z-test (Method 1)

Since there are only two subgroups here, we can work directly with the mean

difference in effect sizes. In a primary study, if we wanted to compare the means

in two groups we would perform a t-test. In meta-analysis the mean and variance are

based on studies rather than subjects but the logic of the test is the same.

Concretely, let �A and �B be the true effects underlying groups A and B, let MA and

MB be the estimated effects, and let VMA
and VMB

be their variances. If we use Diff

to refer to the difference between the two effects, and elect to subtract the mean of A

from the mean of B,

Diff 5 MB �MA;

the test statistic to compare the two effects is

ZDiff 5
Diff

SEDiff

; ð19:6Þ

where

SEDiff 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VMA
þ VMB

p
: ð19:7Þ

Under the null hypothesis that the true effect size � is the same for both groups,

H0 : �A 5 �B; ð19:8Þ

ZDiff would follow the normal distribution. For a two-tailed test, the p-value is

given by

p 5 2 1� F jZjð Þð Þ½ �; ð19:9Þ

where F(Z) is the standard normal cumulative distribution.

In the running example,

Diff 5 0:6111� 0:3241 5 0:2870;

SEDiff 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0029 þ 0:0033
p

5 0:0782;

ZDiff 5
0:2870

0:0782
5 3:6691;

and

p 5 2 1� F j3:6691jð Þð Þ½ �5 0:0002:
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The two-tailed p-value corresponding to ZDiff 5 3.6691 is 0.0002. This tells us that

the treatment effect is probably not the same for the A studies as for the B studies.

In Excel, the function to compute a 2-tailed p-value for Z is 5(1-(NORMSDIST

(ABS(Z))))*2. Here, 5(1-(NORMSDIST(ABS(3.6691))))*2 will return the value

0.0002.

Comparing A with B : a Q -test based on analysis of variance (Method 2)

In a primary study, the t-test can be used to compare the means in two groups, but to

compare means in more than two groups we use analysis of variance. Concretely,

we partition the total variance (of all subjects about the grand mean) into variance

within groups (of subjects about the means of their respective groups) and variance

between groups (of group means about the grand mean). We then test these various

components of variance for statistical significance, with the last (variance between

groups) addressing the hypothesis that effect size differs as function of group

membership.

In meta-analysis the means are based on studies rather than subjects but the logic

of the test is the same. Specifically, we compute the following quantities (where SS

is the sum of squared deviations).

� QA, the weighted SS of all A studies about the mean of A.

� QB, the weighted SS of all B studies about the mean of B.

� Qwithin, the sum of QA and QB.

� Qbet, the weighted SS of the subgroup means about the grand mean.

� Q, the weighted SS of all effects about the grand mean.

We may write Qwithin 5 QAþQB, to represent the sum of within-group weighted SS,

or more generally, for p subgroups,

Qwithin 5
Xp

j 5 1

Qj: ð19:10Þ

In the running example

Qwithin 5 8:4316þ 4:5429 5 12:9745: ð19:11Þ

The weighted SS are additive, such that Q 5 Qwithin þ Qbet. Therefore, Qbet can be

computed as

Qbet 5 Q� Qwithin: ð19:12Þ

Under the null hypothesis that the effect size � is the same for all groups, 1 to p, Qbet

would be distributed as chi-squared with degrees of freedom equal to p – 1.

In the running example,

Qbet 5 26:4371� 12:9745 5 13:4626: ð19:13Þ
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Each Q statistic is evaluated with respect to the corresponding degrees of freedom.

In the running example (Table 19.3),

� The ‘Total’ line tells us that for the full group of ten studies the variance is

statistically significant (Q 5 26.4371, df 5 9, p 5 0.0017).

� The ‘Within’ line tells us that the variance within groups (averaged across

groups) is not statistically significant (Qwithin 5 12.9745, df 5 8, p 5 0.1127).

� The ‘Between’ line tells us that the difference between groups (the combined

effect for A versus B) is statistically significant (Qbet 5 13.4626, df 5 1,

p 5 0.0002), which means that the effect size is related to the frequency of

tutoring.

� At a finer level of detail, neither the variance within subgroup A (QA 5 8.4316,

df 5 4, p 5 0.0770) nor within subgroup B (QB 5 4.5429, df 5 4, p 5 0.3375) is

statistically significant.

As always, the absence of statistical significance (here, within subgroups) means

only that we cannot rule out the hypothesis that the studies share a common effect

size, and it does not mean that this hypothesis has been proven.

In Excel, the function to compute a p-value for Q is 5CHIDIST(Q,df). For the

test of A versus B, 5CHIDIST(13.4626,1) returns 0.0002.

Comparing A versus B : a Q-test for heterogeneity (Method 3)

The test we just described can be derived in a different way. We can think of

the effect sizes for subgroups A and B as single studies (if we extract the two

subgroup lines and the total line from Figure 19.1 and replace the diamonds with

squares, to represent these as if they were studies, we get Figure 19.3). Then, we

can test these ‘studies’ for heterogeneity, using precisely the same formulas that

we introduced earlier (Chapter 16) to test the dispersion of single studies about the

summary effect.

Concretely, we start with two ‘studies’ with effect sizes of 0.324 and 0.611, and

variance of 0.003 and 0.003. Then, we apply the usual meta-analysis methods to

compute Q (see Table 19.4).

Table 19.3 Fixed-effect model – ANOVA table.

Q df p Formula

A 8.4316 4 0.0770 19.1
B 4.5429 4 0.3375 19.2
Within 12.9745 8 0.1127 19.11
Between 13.4626 1 0.0002 19.13
Total 26.4371 9 0.0017 19.5
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In this example,

M 5
300:833

656:667
5 0:4581; ð19:14Þ

VM 5
1

656:667
5 0:0015; ð19:15Þ

Q 5 151:281� 300:8332

656:667

� �
5 13:4626;

df 5 2� 1 5 1;

and

pðQ 5 13:4626; df 5 1Þ5 0:0002;

where Q represents the weighted sum of squares for studies A and B about the grand

mean. For Q 5 13.4626 and df 5 1, the p-value is 0.0002.

In Excel, the function to compute a p-value for Q is 5CHIDIST(Q,df), and

5CHIDIST(13.4626,1) returns 0.0002.
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Figure 19.3 Fixed-effect model – treating subgroups as studies.

Table 19.4 Fixed-effect model – subgroups as studies.

Study
Effect
size
Y

Variance
Within
VY

Variance
Between

T 2

Variance
Total
V

Weight
W

Calculated quantities

WY WY 2 W 2

A 0.3241 0.0029 0.0000 0.0029 350.000 113.433 36.763 122500.000
B 0.6111 0.0033 0.0000 0.0033 306.667 187.400 114.518 94044.444

656.667 300.833 151.281 216544.444
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Summary

We presented three methods for comparing the effect size across subgroups. One

method was to use a Z-test to compare the two effect sizes directly. Another was to

use a Q-test to partition the variance, and test the between-subgroups portion of the

variance. A third was to use a Q-test to assess the dispersion of the summary effects

about the combined effect. All the methods assess the difference in subgroup

effects relative to the precision of the difference (or the variance across subgroups

effects relative to the variance within subgroups).

As noted earlier, the methods are mathematically equivalent. The two methods that

report Q, report the same value for Q (13.4626). When there is one degree of freedom

(so that we can use either a Z-test or a Q-test) Z is equal to the square root of Q. In our

example, the method that reports Z, reports a value of Z 5 3.6691, which is equal to

the square root of Q. All three methods yield a p-value of 0.0002.

Quantify the magnitude of the difference

The Z-test and the Q-tests address the question of statistical, rather than clinical

significance. In addition to reporting the test of significance, one should

generally report an estimate of the effect size, which in this context is the

difference in mean effect between the two subgroups. For subgroups A and B,

if we elect to subtract the mean of A from the mean of B, the difference is

Diff 5 MB �MA: ð19:16Þ
The 95% confidence interval is estimated by

LLDiff 5 Diff � 1:96� SEDiff ð19:17Þ

and

ULDiff 5 Diff þ 1:96� SEDiff ; ð19:18Þ

where the standard error was defined in (19.7). If we had more than two subgroups,

we could repeat this procedure for all pairs of subgroups. In the running example the

difference in effects (which we have defined as B minus A) and its 95% confidence

interval are estimated as

Diff 5 0:6111� 0:3241 5 0:2870;

SEDiff 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0029þ 0:0033
p

5 0:0782;

LLDiff 5 0:2870� 1:96� 0:0782 5 0:1337;

and

ULDiff 5 0:2870þ 1:96� 0:0782 5 0:4403:
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In words, the true difference between the effect in the subgroup A studies, as

opposed to the subgroup B studies, probably falls in the range of 0.13 to 0.44.

COMPUTATIONAL MODELS

In Part 3 of this volume we discussed the difference between a fixed-effect model

and a random-effects model. Under the fixed-effect model we assume that the true

effect is the same in all studies. By contrast, under the random-effects model we

allow that the true effect may vary from one study to the next. This difference has

implications for the way that weights are assigned to the studies, which affects both

the summary effect and its standard error.

When we introduced these two models we were working with a single set of

studies. Now, we are working with more than one subgroup of studies (in the

running example, A and B) but the same issues apply. Under the fixed-effect

model we assume that all studies in subgroup A share a common effect size and

that all studies in subgroup B share a common effect size. By contrast, under the

random-effects model we allow that there may be some true variation of effects

within the A studies and within the B studies.

When we initially discussed the fixed-effect model we used the example of a

pharmaceutical company that enrolled 1000 patients for a clinical trial and divided

them among ten cohorts of 100 patients each (page 83). These ten cohorts were known

to be identical in all important respects, and so it was reasonable to assume that the true

effect would be the same for all ten studies. When we presented this example we noted

that the conditions described (of all the studies being performed by the same researchers

using the same population and methods) are rare in systematic reviews, and that in most

cases the random-effects model will be more plausible than the fixed-effect.

We can expand the pharmaceutical example to apply to subgroups if we

assume that five of the studies will compare Drug A versus placebo, and the

other five will compare Drug B versus placebo. Within the five Drug A

studies and within the five Drug B studies there should be a single true effect

size, and so in this case it would be correct to use the fixed-effect model

within subgroups. However, the same caveat applies here, in that this kind of

systematic review, where all studies are performed by the same researchers

using the same population and methods, is very rare. In the vast majority of

systematic reviews these conditions will not hold, and a random-effects ana-

lysis would be a better fit for the data.

For example, in the tutoring analysis it seems plausible that the distinction

between the two interventions (one hour versus two hours a week) captures some,

but not all, of the true variation among effects. Within either subgroup of studies

(A or B) there are probably differences from study to study in the motivation of the

students, or the dedication of the teachers, the details of the protocol, or other

factors, such that the true effect differs from study to study. If these differences do
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exist, and can have an impact on the effect size, then the random-effects model is a

better match than the fixed-effect.

When we use the random-effects model, the impact on the summary effect within

subgroups will be the same as it had been when we were working with a single

population. The weights assigned to each study will be more moderate than they had

been under the fixed-effect model (large studies will lose impact while small studies

gain impact). And, the variance of the combined effect will increase.

T 2 should be computed within subgroups

To apply the random-effects model we need to estimate the value of �2, the

variance of true effect sizes across studies. Since �2 is defined as the true variance

in effect size among a set of studies, its value will differ depending on how we

define the set.

If we were to define the set as all studies irrespective of which subgroup they belong

to, with �2 based on the dispersion of all studies from the grand mean, �2 would tend to

be relatively large. By contrast, if we define the set as all studies within a subgroup, with

�2 based on the dispersion of the A studies from the mean of A and of the B studies from

the mean of B, �2 would tend to be relatively small (especially if the A studies and the B

studies do represent distinct clusters, as we have hypothesized).

Since our goal is to estimate the mean and sampling distribution of subgroup A,

and to do the same for subgroup B, it is clearly the variance within subgroups that is

relevant in the present context. Put simply, if some of the variance in effect sizes can

be explained by the type of intervention, then this variance is not a factor in the

sampling distribution of studies within a subgroup (where only one intervention was

used). Therefore, we always estimate �2 within subgroups.

To pool or not to pool

When we estimate �2 within subgroups of studies, the estimate is likely to differ from

one subgroup to the next. In the running example, the estimate of �2 in subgroup

A was 0.016, while in subgroup B it was 0.002. We have the option to pool the within-

group estimates of �2 and apply this common estimate to all studies. Alternatively, we

can apply each subgroup’s estimate of �2 to the studies in that subgroup.

Note. As a shorthand we refer to pooling the estimates of �2. In fact, though, what

we actually pool are Q, df, and C, and then estimate �2 from these pooled values

(see (19.38)).

The decision to pool (or not) depends on the following. If we assume that the true

study-to-study dispersion is the same within all subgroups, then observed differences

in T2 must be due to sampling variation alone. In this case, we should

pool the information to yield a common estimate, and then apply this estimate to all

subgroups. This seems like a plausible expectation in the running example, where the

study-to-study variation in effect size is likely to be similar for subgroups A and B.
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On the other hand, if we anticipate that the true between-studies dispersion may

actually differ from one subgroup to the next, then we would estimate �2 within

subgroups and use a separate estimate of �2 for each subgroup. For example,

suppose that we are assessing an intervention to reduce recidivism among juvenile

delinquents, and comparing the effect in subgroups of studies where the delinquents

did, or did not, have a history of violence. We might expect to see a wider range of

effect sizes in one subgroup than the other.

There is one additional caveat to consider. If we do anticipate that �2 will vary

from one subgroup to the next, so that the correct approach is to use separate

estimates of �2, we still need to be sure that there are enough studies within

each subgroup to yield an acceptably accurate estimate of �2. Generally, if

there are only a few studies within subgroups (say, five or fewer), then the estimates

of �2 within subgroups are likely to be imprecise. In this case, it makes more sense to

use a pooled estimate, since the increased accuracy that we get by pooling

more studies is likely to exceed any real differences between groups in the true

value of �2.

Summary

The logic outlined above is encapsulated in the flowchart shown in Figure 19.4. If

the studies within each subgroup share a common effect size, then we use the fixed-

effect model to assign weights to each study (and �2 is zero). Otherwise, we use the

random-effects model.

Under random effects we always estimate �2within subgroups. If we believe that

the true value of �2 is the same for all subgroups, then the correct procedure is to

pool the estimates obtained within subgroups. If we believe that the true value of �2

varies from one subgroup to the next, the correct procedure is to use a separate

Do we assume that studies
within each subgroup share

a common effect size
Fixed effect Random effects

Do we assume that the true
between-studies variance is the

same for all subgroups

Compute T 2 within subgroups and
use separate estimate of T 2 for each

subgroup (see note in text)

Compute T 2 within subgroups. Pool
these estimates and use same

estimate of T 2  for all subgroups

Yes No

Yes No

Figure 19.4 Flowchart for selecting a computational model.
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estimate for each subgroup. However, if we have only a few studies within

subgroups these estimates may be imprecise and therefore it may be preferable to

pool the estimates.

RANDOM EFFECTS WITH SEPARATE ESTIMATES OF t 2

Here, we proceed through the same set of computations as we did for the fixed-

effect model, but this time using random-effects weights, with a separate estimate

of �2 for each subgroup.

Computing the effects

Figure 19.5 is a forest plot of the studies in subgroups A and B. The studies are

identical to those in the fixed-effect forest plot (Figure 19.2) but the summary

effects, represented by the diamonds, are now based on random-effects weights.

The mean effect size for subgroups A and B are 0.325 and 0.610, with variances of

0.006 and 0.004.

Computations are based on the values in Table 19.5. These values are similar to those

in Table 19.1, except that the variance for each study now includes the within-study

variance and the between-study variance. We did not assume a common value of �2 and

therefore used a separate estimate of �2 for each subgroup. In Figure 19.5 this is

indicated by the symbols at the right, where we have one value for T2
A and another

for T2
B. In Table 19.5, the column labeled T2 shows 0.0164 for the A studies and 0.0022

for the B studies.
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0.480

0.440
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0.651
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Varianceg
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0.0060.325

Hedges’ g and 95% confidence interval
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Kendall
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Vandamm
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Jeffries

Fremont
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Thorwald
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Figure 19.5 Random-effects model (separate estimates of �2 ) – studies and subgroup effects.
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Computations (random effects, separate estimates of t2) for the A studies

MA
�5

50:787

156:512
5 0:3245;

VMA
�5

1

156:512
5 0:0064;

SEMA
�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0064
p

5 0:0799;

LLMA
�5 0:3245� 1:96� 0:0799 5 0:1678;

ULMA
�5 0:3245þ 1:96� 0:0799 5 0:4812;

ZA
�5

0:3245

0:0799
5 4:0595;

pðZA
�Þ < 0:0001;

and

QA
�5 19:868� 50:7872

156:512

� �
5 3:3882: ð19:19Þ

Table 19.5 Random-effects model (separate estimates of �2 ) – computations.

Study

Effect
size

Variance
Within

Variance
Between

Variance
Total Weight

W

Calculated quantities

Y VY T2 V WY WY 2 W 2

A

Thornhill 0.110 0.0100 0.0164 0.0264 37.846 4.163 0.458 1432.308
Kendall 0.224 0.0300 0.0164 0.0464 21.541 4.825 1.081 464.017
Vandamm 0.338 0.0200 0.0164 0.0364 27.455 9.280 3.137 753.788
Leonard 0.451 0.0150 0.0164 0.0314 31.824 14.353 6.473 1012.757
Professor 0.480 0.0100 0.0164 0.0264 37.846 18.166 8.720 1432.308

Sum A 156.512 50.787 19.868 5095.179

B

Jefferies 0.440 0.0150 0.0022 0.0172 57.983 25.512 11.225 3362.002
Fremont 0.492 0.0200 0.0022 0.0222 44.951 22.116 10.881 2020.582
Doyle 0.651 0.0150 0.0022 0.0172 57.983 37.747 24.573 3362.002
Stella 0.710 0.0250 0.0022 0.0272 36.702 26.058 18.501 1347.034
Thorwald 0.740 0.0120 0.0022 0.0142 70.193 51.943 38.438 4927.012

Sum B 267.811 163.376 103.619 15018.633

Sum 424.323 214.163 123.487 20113.812
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Note. The Q* statistic computed here, using random-effects weights, is used only

for the analysis of variance, to partition Q* into its various components. Therefore,

we do not show a p-value for Q*. Rather, the Q statistic computed using fixed-effect

weights (Table 19.2) is the one that reflects the between-studies dispersion, pro-

vides a test of homogeneity for the studies within subgroup A, and is used to

estimate T2.

Computations (random effects, separate estimates of t2) for the B studies

MB
�5

163:376

267:811
5 0:6100;

VMB
�5

1

267:811
5 0:0037;

SEMB
�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0037
p

5 0:0611;

LLMB
�5 0:6100� 1:96� 0:0611 5 0:4903;

ULMB
�5 0:6100þ 1:96� 0:0611 5 0:7298;

ZB
�5

0:6100

0:0611
5 9:9833;

pðZB
�Þ < 0:0001;

and

QB
�5 103:619� 163:3762

267:811

� �
5 3:9523: ð19:20Þ

Computations (random effects, separate estimates of t2) for all ten studies
The statistics here are computed using the same value of T2 as was used within

groups (in this case, not pooled).

M�5
214:163

424:323
5 0:5047; ð19:21Þ

VM
�5

1

424:323
5 0:0024; ð19:22Þ

SEM�5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0024
p

5 0:0485;

LLM�5 0:5047� 1:96� 0:0485 5 0:4096;

ULM�5 0:5047þ 1:96� 0:0485 5 0:5999;
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Z�5
0:5047

0:0485
5 10:3967;

pðZ�Þ < 0:0001;
and

Q�5 123:487� 214:1632

424:323

� �
5 15:3952: ð19:23Þ

Statistics (random-effects) are summarized in Table 19.6.

Comparing the effects

If we return to Figure 19.5 and excerpt the diamonds for the two subgroups we get

Figure 19.6.

The mean effect size for subgroups A and B are 0.325 and 0.610, with variances of

0.006 and 0.004.

Our goal is to compare these two mean effects, and there are several ways that we can

proceed. These approaches are algebraically equivalent, and (it follows) yield the same

p-value. Our goal in presenting several approaches is to provide insight into the process.

Comparing A versus B : a Z-test (Method 1)

We can use a simple Z-test to compare the mean effect for subgroups A versus B.

The formulas are identical to those used earlier, but we change two symbols to

Table 19.6 Random-effects model (separate estimates of �2 ) – summary statistics.

A B Combined

Y 0.3245 0.6100 0.5047
V 0.0064 0.0037 0.0024
SEY 0.0799 0.0611 0.0485
LLY 0.1678 0.4903 0.4096
ULY 0.4812 0.7298 0.5999
Z 4.0595 9.9833 10.3967
p2 0.0000 0.0000 0.0000
Q 3.3882 3.9523 15.3952

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Study Varianceg

B 0.0040.610

A 0.0060.325

Hedges’ G and 95% confidence interval

Figure 19.6 Random-effects model (separate estimates of �2 ) – subgroup effects.
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reflect the random-effects model. First, we use a (*) to indicate that the statistics are

based on random-effects weights rather than fixed-effect weights. Second, the null

hypothesis is framed as �A 5�B, reflecting the fact that these are mean values,

rather than �A 5 �B, which we used to refer to common values when we were

working with the fixed-effect model.

Let �A and �B be the true mean effects underlying subgroups A and B, let M*
A and

M*
B be the estimated effects, and letVMA

� andVMB

� be their variances. If we use Diff* to

refer to the difference between the two effects and elect to subtract the mean of A

from the mean of B,

Diff �5 M�B �M�A: ð19:24Þ

The test statistic to compare the two effects is

Z�Diff 5
Diff �

SEDiff �
; ð19:25Þ

where

SEDiff � 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VMA
� þ VMB

:
p

� ð19:26Þ

Under the null hypothesis that the true mean effect size � is the same for both

groups,

H�0 : ��A 5��B; ð19:27Þ

Z*
Diff would follow the normal distribution. For a two-tailed test the p-value is given

by

p�5 2 1� F jZ�Diff jÞ
� �� i

;
h

ð19:28Þ

where F(Z) is the standard normal cumulative distribution.

In the running example

Diff �5 0:6100� 0:3245 5 0:2856;

SEDiff � 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0064 þ 0:0037
p

5 0:1006;

and

ZDiff � 5
0:2856

0:1006
5 2:8381:

The two-tailed p-value corresponding to Z*
Diff 5 2.8381 is 0.0045. This tells us

that the mean treatment effect is probably not the same for the A studies as for

the B studies. In Excel, the function to compute a 2-tailed p-value for Z is 5

(1-(NORMSDIST(ABS(Z))))*2. Here, 5(1-(NORMSDIST(ABS(2.8381))))*2

will return the value 0.0045.
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Comparing A with B : a Q -test based on analysis of variance (Method 2)
We use the same formulas as we did for method 2 under the fixed-effect model, but now

apply random-effects weights. Note that this approach only works if we use the same

weights to compute the overall effect as we do to compute the effects within groups. In

Table 19.5, studies from subgroup A use the T2 value of 0.0164 both for computing the

subgroup mean and for computing the overall mean. Similarly, studies from subgroup B

use the T2 value of 0.0022 both for computing the subgroup mean and for computing the

overall mean.

We compute the following quantities (where SS is the sum of squared deviations).

� Q*
A, the weighted SS of all A studies about the mean of A.

� Q*
B, the weighted SS of all B studies about the mean of B.

� Q*
within, the sum of Q*

A and Q*
B.

� Q*
bet, the weighted SS of the subgroup means about the grand mean.

� Q*, the weighted SS of all effects about the grand mean.

We may write Q*
within 5 Q*

A þ Q*
B, to represent the sum of within-group weighted

SS, or more generally, for p subgroups,

Q�within 5
Xp

j 5 1

Q�j : ð19:29Þ

In the running example

Q�within 5 3:3882þ 3:9523 5 7:3406: ð19:30Þ

The weighted SS are additive, such that Q* 5 Q*
withinþ Q*

bet. Therefore, Q*
bet can be

computed as

Q�bet 5 Q��Q�within: ð19:31Þ

Under the null hypothesis that the effect sizes � are the same for all groups, 1 to p,

Q*
bet would be distributed as chi-squared with degrees of freedom equal to p – 1.

In the running example

Q�bet 5 15:3952� 7:3406 5 8:0547: ð19:32Þ

Results are summarized in Table 19.7. Note that the only Q statistic that we interpret

here is the one between groups. In the running example, the Between line tells us

Table 19.7 Random-effects model (separate estimates of �2 ) – ANOVA table.

Q* df p Formula

A 3.3882 19.19
B 3.9523 19.20
Within 7.3406 19.30
Between 8.0547 1.0 0.0045 19.32
Total 15.3952 19.23
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that the difference between groups (the combined effect for A versus B) is statisti-

cally significant (Q*
bet 5 8.0547, df 5 1, p 5 0.0045), which means that the effect

size is related to the frequency of tutoring. In Excel, the function to compute a p-

value for Q is 5 CHIDIST(Q,df). For the test of A versus B, 5CHIDIST(8.0547,1)

returns 0.0045.

To address the statistical significance of the total variance or the variance

within groups, we use the statistics reported using the fixed-effect weights (see

Table 19.3) rather than using Q* (total), Q*
A, Q*

B or Q*
within.

Comparing A versus B: a Q -test for heterogeneity (Method 3)
Finally, we could treat the subgroups as if they were studies and perform a test for

heterogeneity across studies. If we extract the two subgroup lines and the total line

from Figure 19.5 and replace the diamonds with squares we get Figure 19.7.

Concretely, we start with two studies with effect sizes of 0.324 and 0.610, and

variances of 0.006 and 0.004. Then, we apply the usual meta-analysis methods to

compute Q. Concretely, using the values in Table 19.8, and applying (11.2) and

subsequent formulas, we compute

M�5
214:163

424:323
5 0:5047; ð19:33Þ

and

VM
�5

1

424:323
5 0:0024: ð19:34Þ

Q 5 116:146� 214:1632

424:323

� �
5 8:0547;

df 5 2� 1 5 1;
and

pðQ 5 8:0547; df 5 1Þ5 0:0045;

where Q represents the weighted sum of squares for Studies A and B about the grand

mean. For Q 5 8.0547 and df 5 1, the p-value is 0.0045.

In Excel, the function to compute a p-value for Q is 5CHIDIST(Q,df). For the

test of A versus B, 5CHIDIST(8.0547,1) returns 0.0045.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Combined 0.0020.505

Study Varianceg

B 0.0040.610

A 0.0060.325

Hedges’ g and 95% confidence interval

Figure 19.7 Random-effects model (separate estimates of �2 ) – treating subgroups as studies.
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Quantify the magnitude of the difference
The difference and confidence interval are given by (19.17) and (19.18):

Diff �5 0:6100� 0:3245 5 0:2856;

SEDiff � 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0064 þ 0:0037
p

5 0:1006;

LLDiff � 5 0:2856� 1:96� 0:1006 5 0:0883;

and
ULDiff � 5 0:2856þ 1:96� 0:1006 5 0:4828:

In words, the true difference between the effect in the A studies, as opposed to the B

studies, probably falls in the range of 0.09 to 0.48.

RANDOM EFFECTS WITH POOLED ESTIMATE OF t 2

Here, we show the computation of summary effects within subgroups, using a

random-effects model with a pooled estimate of � 2, which we refer to as � 2
within.

We illustrate the procedure in Figure 19.8. Note the common value of � 2
within is

assumed to apply to both subgroups.

Formula for estimating a pooled T 2

To estimate the pooled �2, proceed as follows. Recall (12.2) to (12.5) that to

estimate �2 for a single collection of studies we use

T2 5
Q� df

C
; ð19:35Þ

where
df 5 k � 1; ð19:36Þ

where k is the number of studies, and

C 5
X

Wi �
X

W2
iX

Wi

: ð19:37Þ

Table 19.8 Random-effects model (separate estimates of �2 ) – subgroups as studies.

Study
Effect
size

Variance
Within

Variance
Between

Variance
Total Weight

W

Calculated quantities

Y VY T 2 V WY WY 2 W 2

A 0.3245 0.0064 0.0000 0.0064 156.512 50.787 16.480 24495.944
B 0.6100 0.0037 0.0000 0.0037 267.811 163.376 99.666 71722.774

424.323 214.163 116.146 96218.718
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In these equations, Q – df is the excess (observed minus expected) sum of squared

deviations from the weighted mean, and C is a scaling factor.

Similarly, to yield a pooled estimate of �2 we sum each element (Q, df, and C)

across subgroups and then perform the same computation. Concretely,

T2
within 5

Xp

j 5 1

Qj �
Xp

j 5 1

df j

Xp

j 5 1

Cj

: ð19:38Þ

While the true value of � 2
within cannot be less than zero (a variance cannot be

negative), this method of estimating � 2
within can yield a negative value due to

sampling issues (when the observed dispersion is less than we would expect by

chance). In this case, the estimate T 2
within is set to zero.

Computing the effects

Subgroup A yielded an estimate of 0.0164 while subgroup B yielded an estimate of

0.0122, represented in Figure 19.8 as T 2
A and T 2

B. We will pool these two estimates to

yield a pooled value, represented as T 2
within, of 0.0097 (see (19.39)). This is the value

used to assign weights in Table 19.10.

In the running example, the values within each group were computed earlier for

A and B. Table 19.9 shows the values needed to calculate a pooled estimate T2
within

for the running example.
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Figure 19.8 Random-effects model (pooled estimate of �2 ) – studies and subgroup effects.
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Then,

T2
within 5

12:9745� 8

511:508
5 0:00974: ð19:39Þ

Computations below are based on the values in Table 19.10. These are similar to Table

19.5, except that we now assume that all groups have the same �2, and use a common

estimate. In Table 19.10 the same estimate of �2 (0.0097) is applied to all ten studies.

Computations (random effects, pooled estimate of t2) for the A studies

MA
�5

65:161

200:652
5 0:3247;

VMA
�5

1

200:652
5 0:0050;

SEMA
�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0050
p

5 0:0706;

Table 19.9 Statistics for computing a pooled estimate of �2.

Group Q df C

A 8.4316 4 269.8413
B 4.5429 4 241.6667
Sum 12.9745 8 511.5079

Table 19.10 Random-effects model (pooled estimate of �2) – computations.

Study
Effect
size

Variance
Within

Variance
Between

Variance
Total Weight

W

Calculated quantities

Y VY T 2 V WY WY 2 W 2

A

Thornhill 0.110 0.0100 0.0097 0.0197 50.697 5.577 0.613 2570.150
Kendall 0.224 0.0300 0.0097 0.0397 25.173 5.639 1.263 633.678
Vandamm 0.338 0.0200 0.0097 0.0297 33.642 11.371 3.843 1131.752
Leonard 0.451 0.0150 0.0097 0.0247 40.445 18.241 8.226 1635.767
Professor 0.480 0.0100 0.0097 0.0197 50.697 24.334 11.681 2570.150

Sum A 200.652 65.161 25.627 8541.498

B

Jefferies 0.440 0.0150 0.0097 0.0247 40.445 17.796 7.830 1635.767
Fremont 0.492 0.0200 0.0097 0.0297 33.642 16.552 8.143 1131.752
Doyle 0.651 0.0150 0.0097 0.0247 40.445 26.329 17.140 1635.767
Stella 0.710 0.0250 0.0097 0.0347 28.798 20.446 14.517 829.299
Thorwald 0.740 0.0120 0.0097 0.0217 46.030 34.062 25.206 2118.721

Sum B 189.358 115.185 72.837 7351.306

Sum 390.010 180.346 98.463 15892.804
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LLMA

�5 0:3247� 1:96� 0:0706 5 0:1864;

ULMA
�5 0:3247þ 1:96� 0:0706 5 0:4631;

ZA
�5

0:3247

0:0706
5 4:6601;

pðZA
�Þ < 0:0001;

and

QA
�5 25:627� 65:1612

200:652

� �
5 4:4660: ð19:40Þ

Note. The Q* statistic computed here, using random-effects weights, is used

only for the analysis of variance, to partition Q* into its various components.

Therefore, we do not show a p-value for Q*. Rather, the Q statistic computed

using fixed-effect weights (above) is the one that reflects the between-studies

dispersion, provides a test of homogeneity for the studies within subgroup A, and

is used to estimate � 2
within.

Computations (random effects, pooled estimate of t2) for the B studies

MB
�5

115:185

189:358
5 0:6083;

VMB
�5

1

189:358
5 0:0053;

SEMB
�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0053
p

5 0:0727;

LLMB
�5 0:6083� 1:96� 0:0727 5 0:4659;

ULMB
�5 0:6083þ 1:96� 0:0727 5 0:7507;

ZB
�5

0:6083

0:0727
5 8:3705;

pðZB
�Þ < 0:0001;

and

QB
�5 72:837� 115:1852

189:358

� �
5 2:7706: ð19:41Þ
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Computations (random effects, pooled estimate of t2) for all ten studies
The statistics here are computed using the same value of T2 as was used within

groups (in this case, the pooled estimate, T 2
within).

M�5
180:346

390:010
5 0:4624; ð19:42Þ

VM
�5

1

390:010
5 0:0026; ð19:43Þ

SEM
�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0026
p

5 0:0506;

LLM
�5 0:4624� 1:96� 0:0506 5 0:3632;

ULM
�5 0:4624þ1:96� 0:0506 5 0:5617;

Z�5
0:4624

0:0506
5 9:1321;

pðZ�Þ < 0:0001;
and

Q�5 98:463� 180:3462

390:010

� �
5 15:0690: ð19:44Þ

The statistics computed above are summarized in Table 19.11.

Table 19.11 Random-effects model (pooled estimate of �2 ) –
summary statistics.

A B Combined

Y 0.3247 0.6083 0.4624
V 0.0050 0.0053 0.0026
SEY 0.0706 0.0727 0.0506
LLY 0.1864 0.4659 0.3632
ULY 0.4631 0.7507 0.5617
Z 4.6001 8.3705 9.1321
p2 0.0000 0.0000 0.0000
Q 4.4660 2.7706 15.0690
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Comparing the effects

If we return to Figure 19.8 and excerpt the diamonds for the two subgroups we get

Figure 19.9. The mean effect size for subgroups A and B are 0.325 and 0.608, with

variances of 0.005 and 0.005.

Our goal is to compare these two mean effects, and there are several ways that we

can proceed. These approaches are algebraically equivalent, and (it follows) yield

the same p-value.

Comparing A versus B : a Z -test (Method 1)

We can use a Z-test to compare the mean effect for subgroups A versus B. The null

hypothesis and formulas are the same as those for the prior case (where we did not

assume a common value for �2). If we elect to subtract the mean of A from the mean

of B,

Diff �5 M�B �M�A; ð19:45Þ

the test statistic to compare the two effects is

Z�Diff 5
Diff �

SEDiff �
; ð19:46Þ

where

SEDiff � 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VMA
� þ VMB

�
p

: ð19:47Þ

Under the null hypothesis that the true mean effect size �i is the same for both groups,

H0 : �A 5�B; ð19:48Þ

Z*
Diff would follow the normal distribution. For a two-tailed test the p-value is given by

p�5 2 1� F jZ�Diff j
� �� �h i

; ð19:49Þ

where F(Z) is the standard normal cumulative distribution.

In the running example

Diff �5 0:6083� 0:3247 5 0:2835;

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Study Varianceg

B 0.0050.608

A 0.0050.325

Hedges’ g and 95% confidence interval

Figure 19.9 Random-effects model (pooled estimate of �2 ) – subgroup effects.
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SEDiff � 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0050 þ 0:0053
p

5 0:1013;

and

Z�Diff 5
0:2835

0:1013
5 2:7986:

The two-tailed p-value corresponding to Z*
Diff 5 2.7986 is 0.0051. This tells us that the

mean effect is probably not the same for the A studies as for the B studies. In Excel, the

function to compute a 2-tailed p-value for Z is 5(1-(NORMSDIST(ABS(Z))))*2.

Here, 5(1-(NORMSDIST(ABS(2.7986))))*2 will return the value 0.0045.

Comparing A with B: a Q -test based on analysis of variance (Method 2)
Again, we apply the same formulas as we did for the prior case, but this time using

the random-effects weights based on a pooled estimate of �2. Note that this

approach only works if we use the same weights to compute the overall effect as

we do to compute the effects within groups. In Table 19.10 we used a T2 value of

0.0097 for all ten studies, and this is the value used to sum within subgroups and also

to sum across subgroups.

We compute the following quantities (where SS is the sum of squared deviations).

� Q*
A, the weighted SS of all A studies about the mean of A.

� Q*
B, the weighted SS of all B studies about the mean of B.

� Q*
within, the sum of Q*

A and Q*
B.

� Q*
bet, the weighted SS of the subgroup means about the grand mean.

� Q*
, the weighted SS of all effects about the grand mean.

We may write Q*
within 5 Q*

AþQ*
B, to represent the sum of within-group weighted SS,

or more generally, for p subgroups,

Q�within 5
Xp

j 5 1

Q�j : ð19:50Þ

In the running example,

Q�within 5 4:4660þ 2:7706 5 7:2366: ð19:51Þ

The weighted SS are additive, such that Q* 5 Q*
withinþQ*

bet. Therefore, Q*
bet can be

computed as

Q�bet 5 Q��Q�within: ð19:52Þ

Under the null hypothesis that the true man effect size � is the same for all groups, 1

to p, Q*
bet would be distributed as chi-squared with degrees of freedom equal to p – 1.

In the running example

Q�bet 5 15:0690� 7:2366 5 7:8324: ð19:53Þ
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The only Q statistic that we interpret here is the one between groups. In the running

example, the Between line tells us that the difference between groups (the combined

effect for A versus B) is statistically significant (Q*
bet 5 7.8324 df 5 1, p 5 0.0051),

which means that the effect size is related to the frequency of tutoring. In Excel, the

function to compute a p-value for Q is 5CHIDIST(Q,df). For the test of A versus B,

5CHIDIST(7.8324,1) returns 0.0051.

To address the statistical significance of the total variance or the variance within

groups, we use the statistics reported using the fixed-effect weights (Table 19.3)

rather than using Q*
total, Q*

A, Q*
B or Q*

within.

Comparing A versus B : a Q-test for heterogeneity (Method 3)

Finally, we could treat the subgroups as if they were studies and perform a test

for heterogeneity across studies. If we extract the two subgroup lines and the total line

from Figure 19.8 and replace the diamonds with squares we obtain Figure 19.10.

Concretely, we start with two studies with effect sizes of 0.325 and 0.608, and

variances of 0.005 and 0.005. Then, we apply the usual meta-analysis methods to

compute Q. Concretely, using the values in Table 19.13, and applying (11.2) and

subsequent formulas, we compute

M�5
180:346

390:010
5 0:4624; ð19:54Þ

VM
�5

1

390:010
5 0:0026; ð19:55Þ

Q 5 91:227� 180:3462

390:010

� �
5 7:8324;

df 5 2� 1 5 1;

and

pðQ 5 7:8324; df 5 1Þ5 0:0051:

Table 19.12 Random-effects model (pooled estimate of �2 ) –
ANOVA table.

Q* df p Formula

A 4.4660 19.40
B 2.7706 19.41
Within 7.2366 19.51
Between 7.8324 1 0.0051 19.53
Total 15.0690 19.44
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where Q represents the weighted sum of squares for Studies A and B about the grand

mean. For Q 5 7.8324 and df 5 1, the p-value is 0.0051.

In Excel, the function to compute a p-value for Q is 5CHIDIST(Q,df). For

example, 5CHIDIST(7.8324,1) returns 0.0051.

Quantify the magnitude of the difference

The difference and confidence interval are given by (19.17) and (19.18):

Diff �5 0:6083� 0:3247 5 0:2835;

SEDiff � 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0050þ 0:0053
p

5 0:1013;

LLDiff � 5 0:2835� 1:96� 0:1013 5 0:0850;

and
ULDiff � 5 0:2835þ 1:96� 0:1013 5 0:4821:

In words, the true difference between the effect in the A studies, as opposed to the B

studies, probably falls in the range of 0.09 to 0.48.

THE PROPORTION OF VARIANCE EXPLAINED

In primary studies, a common approach to describing the impact of a covariate is to

report the proportion of variance explained by that covariate. That index, R2, is

defined as the ratio of explained variance to total variance,

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Combined 0.0030.462

Study Varianceg

B 0.0050.608

A 0.0050.325

Hedges’ g and 95% confidence interval

Figure 19.10 Random-effects model (pooled estimate of �2 ) – treating subgroups as studies.

Table 19.13 Random-effects model (pooled estimate of �2 ) – subgroups as studies.

Study
Effect
size

Variance
Within

Variance
Between

Variance
Total Weight

W

Calculated quantities

Y VY T2 V WY WY2 W 2

A 0.3247 0.0050 0.0000 0.0050 200.652 65.161 21.161 40261.386
B 0.6083 0.0053 0.0000 0.0053 189.358 115.185 70.066 35856.405

390.010 180.346 91.227 76117.791
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R2 5
�2

explained

�2
total

ð19:56Þ

or, equivalently,

R2 5 1�
�2

unexplained

�2
total

 !
: ð19:57Þ

This index is intuitive because it can be interpreted as a ratio, with a range of 0 to 1

(or expressed as a percentage in the range of 0% to 100%). Many researchers are

familiar with this index, and have a sense of what proportion of variance is likely to

be explained by different kinds of covariates or interventions.

This index cannot be applied directly to meta-analysis for the following reason. In a

primary study, a covariate that explains all of the variation in the dependent variable will

reduce the error to zero (and R2, the proportion of variance explained, would reach 100%).

For example, Figure 19.11 depicts a primary study with 10 participants. All those

in group A have the same score (0.3) and all those in group B have the same score

(0.7). Since the variance within each subgroup is 0.0, group membership explains

100% of the original variance, and R2 is 100%. In a real study, of course, there

would be some variance within groups and R2 would be less than 100%, but the fact

that R2 can potentially reach 100% is part of what makes this index intuitive.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Thornhill

Kendall

Leonard

Vandamm

Professor

Jeffries

Fremont

Stella

Doyle

Thorwald

A

B

Combined

0.3

0.3

0.3

0.3

0.3

0.7

0.7

0.7

0.7

0.7

0.5

Subject Score

B 0.7

A 0.3

Hedges’ g and 95% confidence interval

Figure 19.11 A primary study showing subjects within groups.
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By contrast, consider what happens in a meta-analysis if we have two subgroups

of studies. We assume that there are five studies in each subgroup, with a true

summary effect (say, a standardized mean difference) of 0.30 for each study in

subgroup A and of 0.70 for each study in subgroup B. However, while the true effect

is identical for each study within its subgroup, the observed effects will differ from

each other because of random error.

Thus, the variance within groups, while smaller than the variance between

groups, can never approach zero. If the within-study error is a substantial portion

of the total variance observed (say, 75%), then the upper limit of R2 would be only

25%. As such, two important qualities of the index (the fact that it has a natural scale

of 0% to 100% and the fact that it has the same range across studies) would no

longer apply.

Since the problem with using R2 is the fact that study-level covariates in a

meta-analysis can address only the true variance �2 (and not the within-study variance

v), the logical solution is to redefine R2 (or to define a new index) that is based solely

on the true variance. Rather than defining R2 as the proportion of total variance

explained by the covariates, we will define it as the proportion of true variance

explained by the covariates. Since the true variance is estimated as T2, this gives us

R2 5
T2

explained

T2
total

; ð19:58Þ

or

R2 5 1�
T2

unexplained

T2
total

 !
: ð19:59Þ

In the context of subgroups, the numerator in (19.59) is the between-studies variance

within subgroups, and the denominator is the total between-studies variance (within-

subgroups plus between-subgroups). Therefore, the equation can be written

R2 5 1� T2
within

T2
total

� �
: ð19:60Þ

In the running example, T2 for the full set of studies was 0.0299 (see page 155), and T2

computed by working within subgroups and then pooling across subgroups was 0.0097

(see page 173). This gives us

R2 5 1� 0:0097

0:0299

� �
5 0:6745: ð19:61Þ

In Figure 19.12 we have superimposed a normal curve for the distribution of true

effects within each subgroup of studies, and also across all ten studies. The

relatively narrow dispersion within groups is based on the T2 of 0.0097, while the

relatively wide dispersion across groups is based on the T2 of 0.0299, and R2

captures this change.
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The same idea is shown from another perspective in Figure 19.13. On the top line,

34% of the total variance was within studies and 66% was between studies (which is

also the definition of I2). The within-studies variance cannot be explained by study-

level covariates, and so is removed from the equation and we focus on the shaded

part. On the bottom line, the type of intervention is able to explain 67% of the

relevant variance, leaving 33% unexplained. Critically, the 67% and 33% sum to

100%, since we are concerned only with the variance between studies.

Note 1. While the R2 index has a range of 0 to 1 (0% to 100%) in the population, it

is possible for sampling error to yield an observed value of R2 that falls outside of

this range. In that case, the value is set to either 0 (0%) or 1 (100%).

Note 2. The R2 index only makes sense if we are using a random-effects

model, which allows us to think about explaining some of the between-studies

variance. Under the fixed-effect model the between-studies variance is set at

zero and cannot be changed. Also, the computational model proposed here for

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A

B

0.010
0.030

0.015
0.020

0.010

0.015
0.020

0.025
0.015

0.012

0.003

0.110
0.224

0.451
0.338

0.480

0.440
0.492

0.710
0.651

0.740

0.462

Varianceg

0.0050.608

0.0050.325

Hedges’ g and 95% confidence interval
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Figure 19.12 Random-effects model – variance within and between subgroups.

Within studies 34% Between-studies (I 2) 66%

Within groups
33%

Between groups (R 2) 67%

Figure 19.13 Proportion of variance explained by subgroup membership.
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estimating R2 only works for the case where we assume that �2 is the same for all

subgroups.

MIXED-EFFECTS MODEL

In this volume we have been using the term fixed effect to mean that the effect is identical

(fixed) across all relevant studies (within the full population, or within a subgroup).

In fact the use of the term fixed effect in connection with meta-analysis is at odds

with the usual meaning of fixed effects in statistics. A more suitable term for the

fixed-effect meta-analysis might be a common-effect meta-analysis. The term fixed

effects is traditionally used in another context with a different meaning. Concretely,

we can talk about the subgroups as being fixed in the sense of fixed rather than

random. For example, if we want to compare the treatment effect for a subgroup of

studies that enrolled only males versus a subgroup of studies that enrolled only

females, then we would assume that the subgroups are fixed in the sense that anyone

who wanted to perform this analysis would need to use these same two subgroups

(male and female). By contrast, if we have subgrouping of studies by country, then

we might prefer to treat the subgroups as random. A random-effects assumption

across subgroups of studies in the US, UK, Japan, Australia and Sweden would

allow us to infer what the effect might be in a study in Israel, by assuming it comes

from the same random-effects distribution. In this chapter we assume that when we

are interested in comparing subgroups we make an assumption of the first type,

which means that anyone who performs this comparison must use the same set of

subgroups.

We mention this here for two reasons. One is to alert the reader that in the event that

the subgroups have been sampled at random from a larger pool (as in the example of

countries), thenweareable to take thisadditional sourceofvariability intoaccount.The

mechanism for doing so is beyond the scope of an introductory book.

The other reason is to explain the meaning of the term mixed model, which is

sometimes used to describe subgroup analyses. As explained in this chapter the

summary effect within subgroups can be computed using either a fixed-effect model

or a random-effects model. As outlined immediately above, the difference across

subgroups can be assessed using either a fixed-effects model or a random-effects

model (although the meaning of fixed is different here). This leads to the following

nomenclature.

If we use a fixed-effect model within subgroups and also across subgroups,

the analysis is called a fixed-effects analysis. If we use a random-effects

model within subgroups and a fixed-effect model across subgroups (the

approach that we generally advocate), the model is called a mixed-effects

model. We have the further possibility of assuming random effects both within

and across subgroups; such a model is called a random-effects (or fully

random-effects) model.
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OBTAINING AN OVERALL EFFECT IN THE PRESENCE OF SUBGROUPS

In the tables and forest plots presented in this chapter we presented a summary

effect for each subgroup and also for the total population. Since our primary concern

has been with looking at difference between subgroups we paid little attention to the

value for the total population. Here, we consider if that value should be reported at

all, and if so, how it should be computed.

Should we report a summary effect across all subgroups?

The question of whether or not we should report a summary effect across all

subgroups depends on our goals and also on the nature of the data.

Suppose the primary goal of the analysis is to see if a treatment is more effective

among acute patients than among chronic patients, and it emerges that the treatment

is very effective in one group but harmful in the other. In this case, the take-home

message should be that we need to look at each group separately. To report that the

treatment is moderately effective (on average) would be a bad idea since this is true

for neither group and misrepresents the core finding. In this case, it would be better

to report the effect for the separate subgroups only.

By contrast, if it turns out that the treatment is equally effective (or nearly so)

in both subgroups, then it might be helpful to report a combined effect to serve

as a summary. This would probably be the case also if there are minor

differences among groups, but the substantive implication of the treatment

(or the relationship) is the same for all groups. This is especially true if there are

many subgroups, and the reader will be looking for a single number that is easy to

recall.

If we do decide to report a combined effect across subgroups, we need to be clear

about what this value represents, since this determines how it will be computed. The

basic options are explained below.

Option 1. Combine subgroup means and ignore between-subgroup variance

One option is to compute the weighted mean of the subgroup means. In other words,

we treat each subgroup as a study and perform a fixed-effect analysis using the

mean effect and variance for each subgroup. In this chapter, we showed three

versions of this approach.

These computations were shown for the fixed-effect model in (19.14) and (19.15)

and where we computed the weighted mean of the two subgroups. Note that we

would get the identical values if we worked with the original ten studies and

weighted each by its fixed-effect weight (see (19.3) and (19.4)).

These computations were shown for the random-effects model with separate

estimates of �2 in (19.33) and (19.34), where we computed the weighted mean of

the two subgroups. Note that we would get the identical values if we worked with
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the original ten studies and weighted each by its random-effects weight, with a

separate estimate of �2 for each subgroup (see (19.21) and (19.22)).

These computations were shown for the random-effects model with a pooled

estimate of �2 in (19.54) and (19.55), where we computed the weighted mean of the

two subgroups. Note that we would get the identical values if we worked with the

original ten studies and weighted each by its random-effects weight, with a pooled

estimate of �2 (see (19.42) and (19.43)).

In all three cases, the combined effect refers to no actual population but is rather

the average of two different populations. If the subgroups were male and female

then the combined effect is the expected effect in a population that included both

males and females (in the same proportions as in the subgroups). As always, the

standard error of the mean speaks to the precision of the mean, and not to the

dispersion of effects across subgroups (which is treated as zero).

Option 2. Combine subgroup means, and model the between-subgroup variance

A second option is to assume a random-effects model across subgroups. In other

words, all the formulas and concepts discussed in Chapter 12 are applied here,

except that the unit of analysis is the subgroup rather than the study. This would

make sense if the subgroups have been sampled at random from a larger group of

relevant subgroups. For example, we have the mean effect of a treatment in the US

and in Australia, but we want to estimate what the mean effect of that treatment

would be across all relevant countries.

In this case we need to address precisely the same kinds of issues we

addressed when discussing heterogeneity in Chapter 12. First, we compute a

measure of between-subgroups dispersion, T2
bet. Then, we compute a weighted

mean of the subgroups, where the weights are based on the within-subgroup

error and the between-subgroups variance. To the extent that the subgroup

means differ from each other, the standard error of the combined effect will be

increased (but this additional error will be diminished as additional subgroups

are added).

We can also focus on the dispersion itself (as in Chapters 16 and 17). For example,

we can use the estimate of �2
bet to build a prediction interval that gives us the expected

range of effect sizes for the next country (in our example) selected at random.

Option 3. Perform a separate random-effects analysis on the full set of studies.

If we want to report a combined effect across subgroups, then a third option is

simply to perform a separate random-effects meta-analysis including all of the

studies, and ignoring subgroup membership. Rather than estimate �2 within

subgroups (as we did before) we estimate it across all studies, and so it will tend

to be larger.
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Comparing the options

When our primary goal is to assess differences among subgroups, and use an

analysis of variance table as part of the process, the combined effects across

subgroups are computed using option 1. This yields a set of internally consistent

data.

If we really care about the combined effect across subgroups then options 2 and 3

are the more logical choices. If the subgroups really have been selected at random

from a larger set, then option 2 allows us to model the different sources of error

separately and obtain a better estimate of the true confidence interval for the

combined effect (as well as discuss prediction intervals for a future subgroup),

and is probably the better choice. This assumes, of course, that we have sufficient

information to obtain a reasonably precise estimate of the variance among sub-

groups. By contrast, if the subgrouping is not of major importance, or if multiple

different subgroupings of the studies are being considered, then option 3 is the more

logical choice.

SUMMARY POINTS

� Just as we can use t-tests or analysis of variance in primary studies to assess

the relationship between group membership and outcome, we can use analogs

of these procedures in meta-analysis to assess the relationship between

subgroup membership and effect size.

� We presented three methods that can be used to compare the mean effect

across subgroups. To compare the mean effect in two groups we can use a

Z-test. To compare the mean effect in two or more groups we can use analysis

of variance (modified for use with subgroups) or the Q-test of homogeneity.

All three procedures are mathematically equivalent.

� These analyses may be performed using either the fixed-effect or the random-

effects model within groups, but in most cases the latter is appropriate.

� In primary studies we use R2 to reflect the proportion of variance explained by

group membership. An analogous index, which reflects the proportion of true

variance explained by subgroup membership, can be used for meta-analysis.
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CHAPTER 20

Meta-Regression

Introduction
Fixed-effect model
Fixed or random effects for unexplained heterogeneity
Random-effects model

INTRODUCTION

In primary studies we use regression, or multiple regression, to assess the relation-

ship between one or more covariates (moderators) and a dependent variable.

Essentially the same approach can be used with meta-analysis, except that the

covariates are at the level of the study rather than the level of the subject, and

the dependent variable is the effect size in the studies rather than subject scores. We

use the term meta-regression to refer to these procedures when they are used in a

meta-analysis.

The differences that we need to address as we move from primary studies to meta-

analysis for regression are similar to those we needed to address as we moved from

primary studies to meta-analysis for subgroup analyses. These include the need to

assign a weight to each study and the need to select the appropriate model (fixed

versus random effects). Also, as was true for subgroup analyses, the R2 index, which

is used to quantify the proportion of variance explained by the covariates, must be

modified for use in meta-analysis.

With these modifications, however, the full arsenal of procedures that fall under

the heading of multiple regression becomes available to the meta-analyst. We can

work with sets of covariates, such as three variables that together define a treatment,

or that allow for a nonlinear relationship between covariates and the effect size. We

can enter covariates into the analysis using a pre-defined sequence and assess the

impact of any set, over and above the impact of prior sets, to control for confounding

variables. We can incorporate both categorical (for example, dummy-coded) and

continuous variables as covariates. We can use these procedures both to assess the
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impact of covariates and also to predict the effect size in studies with specific

characteristics.

Multiple regression incorporates a wide array of procedures, and we cannot cover

these fully in this volume. Rather, we assume that the reader is familiar with

multiple regression in primary studies, and our goal here is to show how the same

techniques used in primary studies can be applied to meta-regression.

As is true in primary studies, where we need an appropriately large ratio of

subjects to covariates in order for the analysis be to meaningful, in meta-analysis we

need an appropriately large ratio of studies to covariates. Therefore, the use of meta-

regression, especially with multiple covariates, is not a recommended option when

the number of studies is small. In primary studies some have recommended a ratio

of at least ten subjects for each covariate, which would correspond to ten studies for

each covariate in meta-regression. In fact, though, there are no hard and fast rules in

either case.

FIXED-EFFECT MODEL

As we did when discussing subgroup analysis, we start with the fixed-effect model,

which is simpler, and then move on to the random-effects model, which is generally

more appropriate.

The BCG data set

Various researchers have published studies that assessed the impact of a vaccine,

known as BCG, to prevent the development of tuberculosis (TB). With the

re-emergence of TB in the United States in recent years (including many drug-

resistant cases), researchers needed to determine whether or not the BCG vaccine

should be recommended. For that reason, Colditz et al. (1994) reported a meta-

analysis of these studies, and Berkey et al. (1995) showed how meta-regression

could be used in an attempt to explain some of the variance in treatment effects.

The forest plot is shown in Figure 20.1. The effect size is the risk ratio, with a

risk ratio of 0.10 indicating that the vaccine reduced the risk of TB by 90%, a risk

ratio of 1.0 indicating no effect, and risk ratios higher than 1.0 indicating that the

vaccine increased the risk of TB. Studies are sorted from most effective to least

effective. As always for an analysis of risk ratios, the analysis was performed

using log transformed values and then converted back to risk ratios for

presentation.

Using a fixed-effect analysis the risk ratio for the 13 studies is 0.650 with a

confidence interval of 0.601 to 0.704, which says that the vaccine decreased the

risk of TB by at least 30% and possibly by as much as 40%. In log units the risk ratio is

�0.430 with a standard error of 0.040. The Z-value is �10.625 (p < 0.0001), which

allows us to reject the null hypothesis of no effect.
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At least as interesting, however, is the substantial variation in the treatment

effects, which ranged from a risk ratio of 0.20 (an 80% reduction in risk) to 1.56

(a 56% increase in risk). While some of this variation is due to within-study error,

some of it reflects variation in the true effects. The Q-statistic is 152.233 with df 512

and p < 0.0001. T2 is 0.309, which yields a prediction interval of approximately

0.14 to 1.77, meaning that the true effect (risk ratio) in the next study could

fall anywhere in the range of 0.14 to 1.77. The value of I2 is 92.12, which means

that 92% of the observed variance comes from real differences between studies and,

as such, can potentially be explained by study-level covariates.

The next issue for the authors was to try and explain some of this variation. There

was reason to believe that the drug was more effective in colder climates. This

hypothesis was based on the theory that persons in colder climates were less likely

to have a natural immunity to TB. It was also based on the expectation that the drug

would be more potent in the colder climates (in warmer climates the heat would

cause the drug to lose potency, and direct exposure to sunlight could kill some of the

bacteria that were required for the vaccine to work properly).

In the absence of better predictor variables (such as the actual storage conditions

used for the vaccine) Berkey et al. (1995) used absolute distance from the equator as

a surrogate for climate (i.e. geographical regions in the Northern US would be

colder than those in the tropics), and used regression to look for a relationship

between Distance and treatment effect. Given the post hoc nature of this analysis, a

positive finding would probably not be definitive, but would suggest a direction

for additional research. (See also Sutton et al., 2000; Egger et al., 2001.)

Risk ratio for TB (vaccine vs. placebo) Fixed-effects

Combined 0.650
1.0 100.10

Favours vaccine Favours placebo

Vandiviere et al, 1973
Ferguson & Simes, 1949
Hart & Sutherland, 1977
Rosenthal et al, 1961 

Aronson, 1948

Coetzee & Berjak, 1968
Comstock et al, 1974 
Frimodt-Moller et al, 1973
Comstock et al, 1976 
TB Prevention trial, 1980
Comstock and Webster, 1969

0.198
0.205
0.237
0.254

0.411

0.625
0.712
0.804
0.983
1.012
1.562

Rosenthal et al, 1960 0.260

Stein & Aronson, 1953 0.456

Study RR

Figure 20.1 Fixed-effect model – forest plot for the BCG data.
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Assessing the impact of the slope

Table 20.1 shows the data for each study (events and sample size, effect size and

latitude). Table 20.2 shows the results for a meta-regression using absolute latitude

to predict the log risk ratio.

The regression coefficient for latitude is �0.0292, which means that every one

degree of latitude corresponds to a decrease of 0.0292 units in effect size. In this

case, the effect size is the log risk ratio, and (given the specifics of this example) this

corresponds to a more effective vaccination.

If we were working with a primary study and wanted to test the coefficient for

significance we might use a t-test of the form

t5
B

SEB

; ð20:1Þ

In meta-analysis the coefficient for any covariate (B) and its standard error are based

on groups of studies rather than groups of subjects but the same logic applies.

Historically, in meta-regression the test is based on the Z-distribution, and that is the

Table 20.1 The BCG dataset.

Vaccinated Control

TB Total TB Total RR InRR VInRR Latitude

Vandiviere et al, 1973 8 2545 10 629 0.198 �1.621 0.223 19
Ferguson & Simes, 1949 6 306 29 303 0.205 �1.585 0.195 55
Hart & Sutherland, 1977 62 13598 248 12867 0.237 �1.442 0.020 52
Rosenthal et al, 1961 17 1716 65 1665 0.254 �1.371 0.073 42
Rosenthal et al, 1960 3 231 11 220 0.260 �1.348 0.415 42
Aronson, 1948 4 123 11 139 0.411 �0.889 0.326 44
Stein & Aaronson, 1953 180 1541 372 1451 0.456 �0.786 0.007 44
Coetzee & Berjak, 1968 29 7499 45 7277 0.625 �0.469 0.056 27
Comstock et al, 1974 186 50634 141 27338 0.712 �0.339 0.012 18
Frimodt-Moller et al, 1973. 33 5069 47 5808 0.804 �0.218 0.051 13
Comstock et al, 1976 27 16913 29 17854 0.983 �0.017 0.071 33
TB Prevention Trial, 1980 505 88391 499 88391 1.012 0.012 0.004 13
Comstock & Webster, 1969 5 2498 3 2341 1.562 0.446 0.533 33

Table 20.2 Fixed-effect model – Regression results for BCG.

Fixed effect, Z-Distribution

Point
estimate

Standard
error

95%
Lower

95%
Upper

Z-value p-Value

Intercept 0.34356 0.08105 0.18471 0.50242 4.23899 0.00002
Latitude �0.02924 0.00265 �0.03444 �0.02404 �11.02270 0.00000
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approach presented here (however, see notes at the end of this chapter about other

approaches). The statistic to test the significance of the slope is

Z5
B

SEB

: ð20:2Þ

Under the null hypothesis that the coefficient is zero, Z would follow the normal

distribution.

In the running example the coefficient for latitude is �0.02924 with standard

error 0.00265, so

Z5
�0:02924

0:00265
5�11:0227:

The two-tailed p-value corresponding to Z 5�11.0227 is < 0.00001. This tells us

that the slope is probably not zero, and the vaccination is more effective when the

study is conducted at a greater distance from the equator.

The Z-test can be used to test the statistical significance of any single coefficient

but when we want to assess the impact of several covariates simultaneously we need

to use the Q-test. (This is analogous to the situation in primary studies where we use

a t-test to assess the impact of one coefficient but an F-test to assess the impact of

two or more.)

As we did when working with analysis of variance we can divide the sum of

squares into its component parts, and create an analysis of variance table as follows.

As before, Q is defined as a weighted sum of squares, which we can partition into

its component parts. Q reflects the total dispersion of studies about the grand mean.

Qresid reflects the distance of studies from the regression line. Qmodel is the dispersion

explained by the covariates.

Each Q statistic is evaluated with respect to its degrees of freedom, as follows.

� Q is 152.2330, with 12 degrees of freedom and p<0.00001 (this is the same value

presented for the initial meta-analysis with no covariates). This means that the

amount of total variance is more than we would expect based on within-study error.

� Qmodel is 121.4999 with 1 degree of freedom and p < 0.00001. This means that

the relationship between latitude and treatment effect is stronger than we would

expect by chance.

Table 20.3 Fixed-effect model – ANOVA table for BCG regression.

Analysis of variance

Q df p-Value

Model (Qmodel ) 121.49992 1 0.00000
Residual (Qresid ) 30.73309 11 0.00121
Total (Q ) 152.23301 12 0.00000
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� Qresid is 30.7331 with 11 degrees of freedom and p < 0.0001. This means that

even with latitude in the model, some of the between-studies variance (reflected

by the distance between the regression line and the studies) remains

unexplained.

Qmodel here is analogous to Qbet for subgroup analysis, and Qresid is analogous to

Qwithin for subgroup analysis. If the covariates are coded to represent subgroups,

then Qmodel will be identical to Qbet, and Qresid will be identical to Qwithin.

The Z - test and the Q - test

In this example there is only one covariate and so we have the option of using

either the Z-test or the Q-test to test its relationship with effect size. It follows that

the two tests should yield the same results, and they do. The Z-value is �11.0227,

with a corresponding p-value of <0.0001. The Q-value is 121.4999 with a

corresponding p-value of <0.0001 (with 1 df ). Finally, Q should be equal to Z2

(since Q squares each difference while Z does not) and in fact �11.02272 is equal

to 121.4999.

When we have more than one covariate the Q statistic serves as an omnibus test of

the hypothesis that all the B’s are zero. The Z-test can be used to test any coefficient,

with the others held constant.

Quantify the magnitude of the relationship

The Z-test, like all tests of significance, speaks to the question of statistical, rather

than substantive, significance. Therefore, in addition to reporting the test of sig-

nificance, one should always report the magnitude of the relationship. Here, the

relationship of latitude to effect (expressed as a log risk ratio) is

ln ðRRÞ50:3435� 0:0292 Xð Þ

where X is the absolute latitude. Figure 20.2 shows the plot of log risk ratio on

latitude.

In the graph, each study is represented by a circle that shows the actual coordi-

nates (observed effect size by latitude) for that study. The size (specifically, the

area) of each circle is proportional to that study’s weight in the analysis. Since this

analysis is based on the fixed-effect model, the weight is simply the inverse of the

within-study variance for each study.

The center line shows the predicted values. A study performed relatively close

to the equator (such as the study performed in Madras, India, latitude 13) would

have an expected effect near zero (corresponding to a risk ratio of 1.0, which means

that the vaccination has no impact on TB). By contrast, a study at latitude 55

(Saskatchewan) would have an expected effect near �1.20 (corresponding to a risk

ratio near 0.30, which means that the vaccination is expected to decrease the risk of TB

by about 70%).
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The 95% confidence interval for B is given by

LLB5B� 1:96� SEB ð20:3Þ

and

ULB5Bþ 1:96� SEB: ð20:4Þ

In the BCG example

LLB5 �0:0292ð Þ � 1:96� 0:00275�0:0344

and

ULB5 �0:0292ð Þ þ 1:96� 0:00275�0:0240:

In words, the true coefficient could be as low as �0.0344 and as high as �0.0240.

These limits can be used to generate confidence intervals on the plot.

FIXED OR RANDOM EFFECTS FOR UNEXPLAINED HETEROGENEITY

In Part 3 we discussed the difference between a fixed-effect model and a random-

effects model. Under the fixed-effect model we assume that the true effect is the

same in all studies. By contrast, under the random-effects model we allow that the

true effect may vary from one study to the next.

When we were working with a single population the difference in models

translated into one true effect versus a distribution of true effects for all studies.

When we were working with subgroups (analysis of variance) it translated into

one true effect versus a distribution of effects for all studies within a subgroup (for

example, studies that used Intervention A or studies that used Intervention B).

0 10 20 30 40 50 60 70

Regression of log risk ratio on latitude (Fixed-effect)

–3.0

–2.0

–1.0

0.0

1.0

Latitude

ln(RR)

Figure 20.2 Fixed-effect model – regression of log risk ratio on latitude.
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For meta-regression it translates into one true effect versus a distribution of effects

for studies with the same predicted value (for example, two studies that share the

same value on all covariates). This is shown schematically in Figure 20.3 and

Figure 20.4.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Dose
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Effect size

Prediction line

Figure 20.4 Random-effects model – population effects as a function of covariate.
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Figure 20.3 Fixed-effect model – population effects as function of covariate.
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Under the fixed-effect model, for any set of covariate values (that is, for any

predicted value) there is one population effect size (represented by a circle in

Figure 20.3). Under the random-effects model, for any predicted value there is a

distribution of effect sizes (in Figure 20.4 the distribution is centered over the

predicted value but the population effect size can fall to the left or right of center).

(In both figures we assume that the prediction is perfect, so that the true effect (or

mean effect) falls directly on the prediction line.)

As always, the selection of a method should follow the logic of how the studies

were selected. When we introduced the idea of fixed versus random effects for a

single population, the example we used for the fixed-effect model was a pharma-

ceutical company that planned a series of ten trials that were identical for all

intents and purposes (page 83). When we moved on to analysis of variance we

extended the same example, and assumed that five cohorts would be used to test

placebo versus Drug A, while five would be used to test placebo versus Drug B

(page 161). We can extend this example, and use it to create an example where a

fixed-effect analysis would be appropriate for meta-regression. As before, we’ll

assume a total of 10 studies, five for placebo versus Drug A and five for placebo

versus Drug B. This time we’ll assume that each study used either 10, 20, 40, 80,

or 160 mg. of the drug and we will use regression to assess the impact of Drug and

Dose. The fixed-effect model makes sense here because the studies are known to

be identical on all other factors.

As before, we note that this example is not representative of most systematic

reviews. In the vast majority of cases, especially when the studies are performed by

different researchers and then culled from the literature, it is more plausible that the

impact of the covariates captures some, but not all, of the true variation among

effects. In this case, it is the random-effects model that reflects the nature of the

distribution of true effects, and should therefore be used in the analyses. Also as

before, if the study design suggests that the random-effects model is appropriate,

then this model should be selected a priori. It is a mistake to start with the fixed-

effect model and move on to random effects only if the test for heterogeneity is

statistically significant.

Since the meaning of a summary effect size is different for fixed versus random

effects, the null hypothesis being tested also differs. Both test a null hypothesis of

no linear relationship between the covariates and the effect size. The difference is

that under the fixed-effect model that effect size is the common effect size for all

studies with a given value of the covariates. Under the random-effects model that

effect size is the mean of the true effect sizes for all studies with a given value of

the covariates. This is important, because the different null hypotheses reflect

different assumptions about the sources of error. This means that different error

terms are used to compute tests of significance and confidence intervals under the

two models.

Computationally, the difference between fixed effect and random effects is

in the definition of the variance. Under the fixed-effect model the variance is
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the variance within studies, while under the random-effects model it is the

variance within studies plus the variance between studies (t2). This holds true

for one population, for multiple subgroups, and for regression, but the mechan-

ism used to estimate t2 depends on the context. When we are working with a

single population, t2 reflects the dispersion of true effects across all studies,

and is therefore computed for the full set of studies. When we are working

with subgroups, t2 reflects the dispersion of true effects within a subgroup, and

is therefore computed within subgroups. When we are working with regression,

t2 reflects the dispersion of true effects for studies with the same predicted

value (that is, the same value on the covariates) and is therefore computed for

each point on the prediction slope. As a practical matter, of course, most points

on the slope have only a single study, and so this computation is less transpar-

ent than that for the single population (or subgroups) but the concept is the

same. The computational details are handled by software and will not be

addressed here.

The practical implications of using a random-effects model rather than a fixed-

effect model for regression are similar to those that applied to a single population

and to subgroups. First, the random-effects model will lead to more moderate

weights being assigned to each study. As compared with a fixed-effect model, the

random-effects model will assign more weight to small studies and less weight to

large studies. Second, the confidence interval about each coefficient (and slope)

will be wider than it would be under the fixed-effect model. Third, the p-values

corresponding to each coefficient and to the model as a whole are less likely to meet

the criterion for statistical significance.

As always, the selection of a model must be based on the context and character-

istics of the studies. In particular, if there is heterogeneity in true effects that is not

explained by the covariates, then the random-effects model is likely to be more

appropriate.

RANDOM-EFFECTS MODEL

We return now to the BCG example and apply the random-effects model (Figure 20.5).

Using a random effects analysis the risk ratio for the 13 studies is 0.490 with a

confidence interval of 0.345 to 0.695, which says that the mean effect of the

vaccine was to decrease the risk of TB by at least 30% and possibly by as much as

65% (see Figure 20.5). In log units the risk ratio is�0.714 with a standard error of

0.179, which yields a Z-value of -3.995 (p < 0.001) which allows us to reject the

null hypothesis of no effect.

At least as interesting, however, is the substantial variation in the treatment

effects, which ranged from a risk ratio of 0.20 (vaccine reduces the risk by 80%)

to 1.56 (vaccine increases the risk by 56%). The relevant statistics were presented

when we discussed the fixed-effect model.
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Assessing the impact of the slope

A meta-regression using the random-effect model (method of moments) yields the

results shown in Table 20.4.

This has the same format as Table 20.2, showing the coefficients for predicting the

log risk ratio from latitude and related statistics. We use an asterisk (*) to indicate that

these statistics are based on the random-effects model. With that distinction, the

interpretation of the slope(s) is the same as that for the fixed-effect model. Concretely,

Z�5
B�

SEB �
: ð20:5Þ

Under the null hypothesis that the coefficient is zero, Z* would follow the normal

distribution.

In the running example the coefficient for latitude is�0.0923 with standard error

0.00673, so

Z5
�0:02923

0:00673
5�4:3411:

Risk ratio for TB (vaccine vs. placebo) Random-effects

Combined 0.490
1.0 100.10

Favours vaccine Favours placebo

Vandiviereet al, 1973 
Ferguson & Simes, 1949
Hart & Sutherland, 1977
Rosenthal et al, 1961 

Aronson, 1948

Coetzee & Berjak, 1968
Comstock et al, 1974 
Frimodt-Moller et al, 1973
Comstock et al, 1976 
TB Prevention trial, 1980

Comstock and Webster, 1969

0.198
0.205
0.237
0.254

0.411

0.625
0.712
0.804
0.983
1.012
1.562

Rosenthal et al, 1960 0.260

Stein & Aronson, 1953 0.456

Study RR

Figure 20.5 Random-effects model – forest plot for the BCG data.

Table 20.4 Random-effects model – regression results for BCG.

Random effects, Z-Distribution

Point
estimate

Standard
error

95%
Lower

95%
Upper

Z-value p-Value

Intercept 0.25954 0.23231 �0.19577 0.71486 1.11724 0.26389
Latitude �0.02923 0.00673 �0.04243 �0.01603 �4.34111 0.00001
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(In this example the slope happens to be almost identical under the fixed-effect and

random-effects models, but this is not usually the case.) The two-tailed p-value

corresponding to Z* 5�4.3411 is 0.00001. This tells us that the slope is probably

not zero, and the vaccination is more effective when the study is conducted at a

greater distance from the equator.

Under the null hypothesis that none of the covariates 1 to p is related to effect size,

Q*
model would be distributed as chi-squared with degrees of freedom equal to p. In

the running example, Q*
model 518.8452, df 51, and p 5 0.00001 (see Table 20.5).

In this example there is only one covariate (latitude) and so we have the option of using

either the Z-test or the Q-test to assess the impact of this covariate. It follows that the two

tests should yield the same results, and they do. The Z-value is�4.3411, with a correspond-

ing p-value of 0.00001. The Q-value is 18.8452 with a corresponding p-value of 0.00001.

Finally, Q*
model should be equal to Z*2 and in fact 18.8452 equals�4.34112.

The goodness of fit test addresses the question of whether there is heterogeneity

that is not explained by the covariates. Qresid can also be used to estimate (and test)

the variance, t2, of this unexplained heterogeneity. This Qresid is the weighted

residual SS from the regression using fixed-effect weights (see Table 20.3)

Q*
model here is analogous to Q*

bet for subgroup analysis, and Qresid is analogous to

Qwithin for subgroup analysis. If the covariates represent subgroups, then Q*
model is

identical to Q*
bet and Qresid is identical to Qwithin. If there are no predictors then

Qresid here is the same as Q for the original meta-analysis.

When working with meta-regression with the fixed-effect model we were able to

partition the total variance into a series of components, with Qmodel plus Qresid

summing to Q. This was possible with the fixed-effect model because the weight

assigned to each study was determined solely by the within-study error, and was

therefore the same for all three sets of calculations. By contrast, under the random-

effects model the weight assigned to each study incorporates between-studies

variance also, and this varies from one set of calculations to the next. Therefore,

the variance components are not additive. For that reason, we display an analysis of

variance table for the fixed-effect analysis, but not for the random-effects analysis.

Quantify the magnitude of the relationship

The relationship of latitude to effect (expressed as a log risk ratio) is

ln ðRRÞ50:2595� 0:0292 Xð Þ
where X is the absolute latitude. We can plot this in Figure 20.6.

Table 20.5 Random-effects model – test of the model.

Test of the model:
Simultaneous test that all coefficients (excluding intercept) are zero
Q*model 5 18.8452, df 5 1, p 5 0.00001
Goodness of fit: Test that unexplained variance is zero
T2 5 0.063, SE 5 0.055, Qresid 5 30.733, df 5 11, p 5 0.00121
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In this Figure, each study is represented by a circle that shows the actual

coordinates (observed effect size by latitude) for that study. The size (specifically,

the area) of each circle is proportional to that study’s weight in the analysis. Since

this analysis is based on the random-effects model, the weight is the total variance

(within-study plus T 2) for each study.

Note the difference from the fixed-effect graph (Figure 20.2). When using

random effects, the weights assigned to each study are more similar to one another.

For example, the TB prevention trial (1980) study dominated the graph under the

fixed-effect model (and exerted substantial influence on the slope) while Comstock

and Webster (1969) had only a trivial impact (the relative weights for the two

studies are 41% and 0.3% respectively). Under random effects the two are more

similar (14% and 1.6% respectively).

The center line shows the predicted values. A study performed relatively close to

the equator (latitude of 10) would have an expected effect near zero (corresponding

to a risk ratio of 1.0, which means that the vaccination has no impact on TB).

By contrast, a study at latitude 55 (Saskatchewan) would have an expected effect

near �1.50 (corresponding to a risk ratio near 0.20, which means that the vaccina-

tion decreased the risk of TB by about 80%).

The 95% confidence interval for B is given by

LLB � 5B� � 1:96� SEB � ð20:6Þ

and

ULB � 5B� þ 1:96� SEB � : ð20:7Þ

In the running example

LLB � 5 �0:0292ð Þ � 1:96� 0:00675�0:0424
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Figure 20.6 Random-effects model – regression of log risk ratio on latitude.
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and

ULB � 5ð�0:0292Þ þ 1:96� 0:00675�0:0160:

In words, the true coefficient could be as low as �0.0424 and as high as �0.0160.

The proportion of variance explained

In Chapter 19 we introduced the notion of the proportion of variance explained by

subgroup membership in a random-effects analysis. The same approach can be

applied to meta-regression.

Consider Figure 20.7, which shows a set of six studies with no covariate. Since

there is no covariate the prediction slope is simply the mean (the intercept, if we

were to compute a regression), depicted by a vertical line. The normal distribution at

the bottom of the figure reflects T 2, and is needed to explain why the dispersion

from the prediction line (the mean) exceeds the within-study error.

Now, consider Figure 20.8, which shows the same size studies with a covariate

X, and the prediction slope depicted by a line that reflects the prediction equation.

The normal distribution at each point on the prediction line reflects the value of

T 2, and is needed to explain why the dispersion from the prediction line (this time,

the slope) exceeds the within study error. Because the covariate explains some of

the between-studies variance, the T 2 in Figure 20.8 is smaller than the one in

Figure 20.8., and the ratio of the two can be used to quantify the proportion of

variance explained.

Note 1. Normally, we would plot the effect size on the Y axis and the covariate on

the X axis (see, for example, Figure 20.6). Here, we have transposed the axes to

maintain the parallel with the forest plot.

Note 2. For clarity, we plotted the true effects for each figure. In practice, of

course, we observe estimates of the true effects, remove the portion of variance

attributed to within-study error, and impute the amount of variance remaining.

In primary studies, a common approach to describing the impact of a covariate is

to report the proportion of variance explained by that covariate. That index, R2, is

defined as the ratio of explained variance to total variance,

R25
�2

explained

�2
total

ð20:8Þ

or, equivalently,

R251�
�2

unexplained

�2
total

 !
: ð20:9Þ

This index is intuitive as it can be interpreted as a ratio, with a range of 0 to 1, or

of 0% to 100%. Many researchers are familiar with this index, and have a sense

of what proportion of variance is likely to be explained by different kinds of

covariates or interventions.
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This index cannot be applied directly to meta-analysis. The reason is that in meta-

analysis the total variance includes both variance within studies and between studies.

The covariates are study-level covariates, and as such they can potentially explain

only the between-studies portion of the variance. In the running illustration, even if

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
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Effect size
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Figure 20.8 Between-studies variance (T 2 ) with covariate.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Dose

1000

800

600

400

200

Effect size

Prediction line

Figure 20.7 Between-studies variance (T 2 ) with no covariate.
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the true effect for each study fell directly on the prediction line the proportion of

variance explained would not approach 1.0 because the observed effects would fall at

some distance from the prediction line.

Therefore, rather than working with this same index we use an analogous index,

defined as the true variance explained, as a proportion of the total true variance.

Since the true variance is the between-studies variance, t2, we compute

R25
T2

explained

T2
total

ð20:10Þ

or

R251�
T2

unexplained

T2
total

 !
: ð20:11Þ

In the running example T2
total for the full set of studies was 0.309, and T2

unexplained for

the equation with latitude is 0.063. This gives us

R251� 0:063

0:309

� �
50:7950: ð20:12Þ

This is shown schematically for the running example (see Figure 20.9). In Figure

20.9, the top line shows that 8% of the total variance was within studies and 92%

Table 20.6 Random-effects model – comparison of model (latitude) versus the null model.

Comparison of model with latitude versus the null model

Total between-study variance (intercept only)
T2total 5 0.309, SE 5 0.230, Qresid 5 152.233, df 5 12, p 5 0.00000

Unexplained between-study variance (with latitude in model)
T2unexplained 5 0.063, SE 5 0.055, Qresid 5 30.733, df 5 11, p 5 0.0012

Proportion of total between-study variance explained by the model
R2 analog 5 1�(0.063/0.309) 79.50%

Within
Studies

8%
Between-studies (I 2 ) 92%

Unexplained
21%

Explained by latitude (R  2) 79%

Figure 20.9 Proportion of variance explained by latitude.
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was between studies (which is also the definition of I2). The within-studies

variance cannot be explained by a study-level moderator, and so is removed

from the equation and we focus on the shaded part.

On the bottom line, the type of intervention is able to explain 79% of the relevant

variance, leaving 21% unexplained. Critically, the 79% and 21% sum to 100%,

since we are concerned only with the variance between-studies.

While the R2 index has a range of 0 to 1 in the population, it is possible for

sampling error to yield a value of R2 that falls outside of this range. In that case, the

value is set to either 0 (if the estimate falls below 0) or to 1 (if it falls above 1).

SUMMARY POINTS

� Just as we can use multiple regression in primary studies to assess the

relationship between subject-level covariates and an outcome, we can use

meta-regression in meta-analysis to assess the relationship between study-

level covariates and effect size.

� Meta-regression may be performed under the fixed-effect or the random-

effects model, but in most cases the latter is appropriate.

� In addition to testing the impact of covariates for statistical significance, it is

important to quantify the magnitude of their relationship with effect size. For

this purpose we can use an index based on the percent reduction in true

variance, analogous to the R2 index used with primary studies.
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CHAPTER 21

Notes on Subgroup Analyses
and Meta-Regression

Introduction
Computational model
Multiple comparisons
Software
Analyses of subgroups and regression analyses are observational
Statistical power for subgroup analyses and meta-regression

INTRODUCTION

In this chapter we address a number of issues that are relevant to both subgroup

analyses (analysis of variance) and to meta-regression.

COMPUTATIONAL MODEL

The researcher must always choose between a fixed-effect model and a random-

effects model. When we are working with a single set of studies the fixed-effect

analysis assumes that all studies share a common effect size. When we are working

with subgroups, it assumes that all studies within a subgroup share a common effect

size. When we are working with meta-regression, it assumes that all studies which

have the same values on the covariates share a common effect size.

These kinds of assumption can sometimes be justified, as in the pharmaceutical

example that we used on pages 83, 161 and 195. In most cases, however, especially

when the studies for the review have been culled from the literature, it is more

plausible to assume that the subgroup membership or the covariates explain some,

but not all, of the dispersion in effect sizes. Therefore, the random-effects model is

more likely to fit the data, and is the model that should be selected.
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Mistakes to avoid in selecting a model

When we introduced the idea of a random-effects model in Chapter 12 we noted that

researchers sometimes start with a fixed-effect model and then move to a random-

effects model if there is empirical evidence of heterogeneity (a statistically sig-

nificant p-value). In the case of subgroup analysis this approach would suggest that

we start by using the fixed-effect model within groups, and then move to the

random-effects model only if Q within groups was statistically significant. In the

case of meta-regression it would suggest that we start by using the fixed-effect

model, and then move to the random-effects model only if the Q for the residual

error was statistically significant.

We explained that this approach was problematic when working with a single set

of studies, and it continues to be a bad idea here, for the same reasons. If substantive

considerations suggest that the effect size is likely to vary (within the full set of

studies, within subgroups, or for studies with a common set of covariate values) then

we should be using the corresponding model even if the test for heterogeneity fails

to yield a significant p-value. This lack of significance means only that we have

failed to meet a certain threshold of proof (possibly because of low statistical

power) and does not prove that the studies share a common effect size.

Practical differences related to the model

Researchers often ask about the practical implications of using a random-effects

model rather than a fixed-effect model. The random-effects model will apportion

the study weights more evenly, so that a large study has less impact on the summary

effect (or regression line) than it would have under the fixed-effect model, and a

small study has more impact that it would have under the fixed-effect model. Also,

confidence intervals will tend to be wider under the random-effects model than

under the fixed-effect model. While this tells us what the impact will be of using the

fixed-effect or random-effects model, it says nothing about which model we should

use. The only issue relevant to that decision is the question of which model fits

the data.

The null hypothesis under the different models

Since the meaning of a summary effect size is different for fixed versus random

effects, the null hypothesis being tested also differs under the two models.

Recall that when we are working with a single group, under the fixed-effect

model the summary effect size represents the common effect size for all the studies.

The null hypothesis is that the common effect size is equal to a nil value (0.00 for a

difference, or 1.00 for a ratio). By contrast, under the random-effects model the

summary effect size represents the mean of the distribution of effect sizes. The null

hypothesis is that the mean of all possible studies is equal to the nil value.
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In subgroup analyses, under the fixed-effect model the summary effect size for

subgroups A and B each represents the common effect size for a group of studies.

The null hypothesis is that the common effect for the A studies is the same as the

common effect for the B studies. By contrast, under the random-effects model the

effect size for subgroups A and B each represents the mean of a distribution of effect

sizes. The null hypothesis is that the mean of all possible A studies is identical to the

mean of all possible B studies.

In regression, under the fixed-effect model we assume that there is one true effect

size for any given value of the covariate(s). The null hypothesis is that this effect

size is the same for all values of the covariate(s). By contrast, under the random-

effects model we assume that there is a distribution of effect sizes for any given

value of the covariate(s). The null hypothesis is that this mean is the same for all

values of the covariate(s).

While the distinction between a common effect size and a mean effect size might

sound like a semantic nuance, it actually reflects an important distinction between

the models. In the case of the fixed-effect model, because we assume that we are

dealing with a common effect size, we apply an error model which assumes that the

between-studies variance is zero. In the case of the random-effects model, because

we allow that the effect sizes may vary, we apply an error model which makes

allowance for this additional source of uncertainty. This difference has an impact on

the mean (the summary effect for a single group, the summary effect within

subgroups, and the slope in a meta-regression). It also has an impact on the standard

error, tests of significance and confidence intervals.

Some technical considerations in random-effects meta-regression

As is the case for a standard random-effects meta-analysis in the absence of

covariates, several methods are available for estimating �2 in meta-regression,

including a moment method and maximum likelihood method. In practice, any

differences among methods will usually be small.

The results we presented in this chapter used a moment estimate, which is the

same as the method we used in Chapter 16 to estimate �2 for a single group. If we

were to perform a meta-regression with no covariates, our estimate of �2 would be

the same as the estimate we would obtain using the formulas in that chapter.

Whichever method is used to estimate �2, the use of a Z-test to assess the

statistical significance of a covariate (or the difference between two subgroups),

while common, is not strictly appropriate. When dealing with simple numerical

data, to compute a confidence interval or to test the significance of a difference (or

variance) we use Z if the sampling distribution is known. By contrast, we use t if the

sampling distribution is being estimated from the dispersion observed in the sample

(as it is, for example, when we compare means using a t-test).

Similarly, in meta-analysis, the Z-distribution is appropriate only for the fixed-effect

model, where the only source of error is within studies. By contrast, when we use a
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random-effects model, we are estimating the dispersion across studies, and should

account for this by using a t-distribution. Several methods have been proposed to

address this issue, including one by Knapp and Hartung (2003) which is outlined

below. While these can be applied to any use of the random-effects model (for a single

group of studies, for a subgroup analysis, and for meta-regression), they have to date

only been implemented in software for meta-regression.

The Knapp-Hartung method involves two modifications to the standard error for

the random-effects model. First, the between-studies component of the variance

is multiplied by a factor that makes it correspond to the t-distribution rather than the

Z-distribution. Second, the test statistic is compared against the t-distribution rather

than the Z-distribution. This has the effect of expanding the width of the confidence

intervals and of moving the p-value away from zero.

Higgins and Thompson (2004) proposed an approach that bypasses the sampling

distributions and instead employs a permutation test to yield a p-value. Using this

approach we compute the Z-score corresponding to the observed covariate. Then,

we randomly redistribute the covariates among studies and see what proportion of

these yield a Z-score exceeding the one that we had obtained. This proportion may

be viewed as an exact p-value.

MULTIPLE COMPARISONS

In primary studies researchers often need to address the issue of multiple compar-

isons. The basic problem is that if we conduct a series of analyses with alpha set at

0.05 for each, then the overall likelihood of a type I error (assuming that the null is

actually true) will exceed 5%. This problem crops up when a study includes more

than two groups and we compare more than one pair of means. It also arises when

we perform an analysis on more than one outcome.

While there is consensus that conducting many comparisons can pose a

problem, there is no consensus about how this problem should be handled.

Some suggest conducting an omnibus test that asks if there are any nonzero

effects, and then proceeding to look at pair-wise comparisons only if the initial

test meets the criterion for significance. Others suggest going straight to the pair-

wise tests but using a stricter criterion for significance (say 0.01 rather than 0.05

for five tests). Hedges and Olkin (1985) discuss this and other methods to control

the error rate when using multiple tests. Some suggest that the researcher not

make any formal adjustment, but evaluate the data in context. For example, one

significant p-value in forty tests would not be seen as grounds for rejection of the

null hypothesis.

Essentially the same issue exists in meta-analysis. In the case of subgroup

analyses, if a meta-analysis includes a number of subgroups, the issue of multiple

comparisons arises when we start to compare several pairs of subgroup means. In

the case of meta-regression this issue arises when we include a number of covariates

and want to test each one for significance. As with primary studies, while there is

208 Heterogeneity



consensus that conducting many comparisons can pose a problem, there is no

consensus about how this problem should be handled. The approaches generally

used for primary studies can be applied to meta-analysis as well.

SOFTWARE

Some of the programs developed for meta-analysis are able to perform subgroup

analysis as well as meta-regression (see Chapter 44). Note that programs intended

for statistical analysis of primary studies should not be used to perform these

procedures in meta-analysis, for two reasons. First, routines for analysis of variance

or multiple regression intended for primary studies do not weight the studies, as is

needed for meta-analysis. While most programs do allow the user to assign weights,

this becomes a difficult procedure when we move to random-effects weights (which

are usually the ones we want to use). Second, the rules for assigning degrees of

freedom in the analysis of variance and meta-regression are different for meta-

analysis than for primary studies, and so using the primary-study routines for a

meta-analysis will yield incorrect standard errors and p-values.

ANALYSES OF SUBGROUPS AND REGRESSION ANALYSES ARE OBSERVATIONAL

In a randomized trial, participants are assigned at random to a condition (such as

treatment versus placebo). Because the participants are assumed to be similar in all

respects except for the treatment condition, differences that do emerge between

conditions can be attributed to the treatment. By contrast, in an observational study

we compare pre-existing groups, such as workers with a college education versus

those who did not attend college. While we can report on differences in wages of the

two groups we cannot attribute this outcome to the amount of schooling because the

groups differ in various ways. For example, we are likely to find that those with a

college education are paid more, but we cannot attribute this to their schooling since

it could be due (at least in part) to other factors associated with higher socio-

economic status.

The issue of randomized versus observational studies as it relates to meta-

analysis is discussed in Chapter 40. There, we discuss the fact that randomized

studies and observational studies address different questions, and for this reason it

generally makes sense to include only one or the other in a given meta-analysis.

However, there is one issue that is directly relevant to the present discussion, as

follows. Assume we start with a set of randomized experiments that assess the

impact of an intervention. The effect in any single experiment could serve to

establish causality and the summary effect can also serve to establish causality.

This is because the relationship between treatment and outcome is protected by the

randomization process (it must be due to treatment) in each study, and this protec-

tion carries over to the summary effect.
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However, even if the individual studies are randomized trials, once we move beyond

the goal of reporting a summary effect and proceed to perform a subgroup analyses or

meta-regression, we have moved out of the domain of randomized experiments, and into

the domain of observational studies. For example, suppose that half the studies used a

low dose of aspirin while half used a high dose, and that the impact of the treatment was

significantly stronger in the high-dose studies. It is possible that the difference is due to

the dose, but it is also possible that the studies that used a higher dose differed in some

systematic way from the other studies. Perhaps these studies used patients who were in

poor health, or older, and therefore more likely to benefit from the treatment. Therefore,

the difference between subgroups, or the relationship between a covariate and effect

size, is observational. The same caveats that apply to any observational studies, in

particular the fact that relationship does not imply causality, apply here too.

That said, in primary observational studies, researchers sometimes use regres-

sion analysis to try and remove the impact of potential confounders. In the

aspirin example they might enter covariates in the sequence of health, age, and

dose, to assess the impact of dose with health and age held constant. This is not a

perfect solution since there may be other confounders of which we are not aware,

but this approach can help to isolate the impact of specific factors and generate

hypotheses to be tested in randomized trials. The same holds true for meta-

regression. Of course, since covariate values are assigned at the study level,

meta-regression can be used to adjust for potential confounders only for com-

parisons across studies, and not for potential confounders within studies.

There is one exception to the rule that subgroup analysis and regression cannot

prove causality. This exception is the case where we know that the studies are

identical in all respects except for the one captured by subgroup membership or by

the covariate. The pharmaceutical example is a case in point. Here, we enrolled

1000 patients and assigned some to studies that would test a low dose of the drug vs.

placebo, and others to studies that would test a high dose of the drug vs. placebo.

Here, the assignment to subgroups is random. The same would apply if the patients

were assigned to ten studies where the dose of drug was varied on a continuous

scale, and we used meta-regression to test the relationship between dose and effect

size. This set of circumstances is rarely (if ever) found in practice.

STATISTICAL POWER FOR SUBGROUP ANALYSES AND META-REGRESSION

Statistical power is the likelihood that a test of significance will reject the null

hypothesis. In the case of subgroup analyses it is the likelihood that the Z-test to

compare the effect in two groups, or the Q-test to compare the effects across a series

of groups, will yield a statistically significant p-value. In the case of meta-regres-

sion it is the likelihood that the Z-test of a single covariate or the Q-test of a set of

covariates will yield a statistically significant p-value.

Power depends on the size of the effect and the precision with which we measure

the effect. For subgroup analysis this means that power will increase as the
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difference between (or among) subgroup means increases, and/or the standard error

within subgroups decreases. For meta-regression this means that power will

increase as the magnitude of the relationship between the covariate and effect size

increases, and/or the precision of the estimate increases. In both cases, a key factor

driving the precision of the estimate will be the total number of individual subjects

across all studies and (for random effects) the total number of studies.

While there is a general perception that power for testing the main effect is

consistently high in meta-analysis, this perception is not correct (see Chapter 29)

and certainly does not extend to tests of subgroup differences or to meta-regression.

The failure to find a statistically significant p-value when comparing subgroups or

in meta-regression could mean that the effect (if any) is quite small, but could also

mean that the analysis had poor power to detect even a large effect. One should

never use a nonsignificant finding to conclude that the true means in subgroups are

the same, or that a covariate is not related to effect size.

SUMMARY POINTS

� The selection of a computational model (fixed-effect or random-effects)

should be based on our understanding of the underlying distribution. In

most cases, especially when the studies have been gathered from the pub-

lished literature, the random-effects model (within-subgroups) is more plau-

sible than the fixed-effect model.

� The strategy of starting with the fixed-effect model and then moving to the

random-effects (or mixed-effect) model if the test for heterogeneity is sig-

nificant, is a mistake, and should be strongly discouraged.

� The problem of performing multiple tests (the fear that the actual alpha may

exceed the nominal alpha) is similar in meta-analysis to the same problem in

primary studies, and similar strategies are suggested for dealing with this problem.

� The relationship between effect size and subgroup membership, or between

effect size and covariates, is observational, and cannot be used to prove

causality. This holds true even if all studies in the analysis are randomized

trials. The protection afforded by the study design carries over to the summary

effect across all studies, but not to other analyses.

� Statistical power for detecting a difference among subgroups, or for detect-

ing the relationship between a covariate and effect size, is often low, and the

usual caveats apply. To wit, failure to obtain a statistically significant

difference among subgroups should never be interpreted as evidence that

the effect is the same across subgroups. Similarly, failure to obtain a

statistically significant effect for a covariate should never be interpreted as

evidence that there is no relationship between the covariate and the effect

size.
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CHAPTER 22

Overview

Thus far we have assumed that each study contributes one (and only one) effect size to

a meta-analysis. In this section we consider cases where studies contribute more than

one effect size to the meta-analysis. These usually fall into one of the following types.

Multiple independent subgroups within a study

Sometimes a single study will report data for several cohorts of participants. For

example, if researchers anticipate that the treatment effect (e.g., drug versus

placebo) could vary by age, they might report the treatment effect separately for

children and for adults. Similarly, if researchers anticipate that the treatment effect

could vary by disease stage they might report the effect separately for patients

enrolled with early-stage disease and for those enrolled with late-stage disease.

The defining feature here is that the subgroups are independent of each other, so

that each provides unique information. For this reason, we can treat each subgroup

as though it were a separate study, which is sometimes the preferred method.

However, there are sometimes other options to consider, and we will be discussing

these as well.

Multiple outcomes or time-points within a study

In some cases researchers will report data on several related, but distinct outcomes.

A study that looked at the impact of tutoring might report data on math scores and

also on reading scores. A study that looked at the association between diet and

cardiovascular disease might report data on stroke and also on myocardial infarc-

tion. Similarly, a study that followed subjects over a period of time may report data

using the same scale but at a series of distinct time-points. For example, studies that

looked at the impact of an intervention to address a phobia might collect data at one

month, six months, and twelve months.

The defining feature here is that the same participants provide data for the

different outcomes (or time-points). We cannot treat the different outcomes as

though they were independent as this would lead to incorrect estimates of the

variance for the summary effect. We will show how to correct the variance to

take account of the relationship among the outcomes.
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More than one comparison group within a study

Sometimes, a study will include several treatment groups and a single control group.

For example, one effect size may be defined as the difference between the placebo

group and drug A, while another is defined as the difference between the same

placebo group and drug B.

The defining feature here is similar to multiple outcomes, in that some partici-

pants (those in the control group) contribute information to more than one effect

size. The methods proposed for dealing with this problem are similar to those

proposed for multiple outcomes. They also include some options that are unique

to the case of multiple comparisons.

How this Part is organized

The next three chapters address each of these cases in sequence. Within each

chapter we first show how to combine data to yield a summary effect, and then

show how to look at differences in effects.

The worked examples in these chapters use the fixed-effect model. We adopt this

approach because it involves fewer steps and thus allows us to focus on the issue at

hand, which is how to compute an effect size and variance. Once we have these

effect sizes we can use them for a fixed-effect or a random-effects analysis, and the

latter is generally more appropriate.

In the worked examples we deliberately use a generic effect size rather than

specifying a particular effect size such as a standardized mean difference or a log

odds ratio. The methods discussed here can be applied to any effect size, including

those based on continuous, binary, correlational, or other kinds of data. As always,

computations for risk ratios or odds ratios would be performed using log values, and

computations for correlations would be performed using the Fisher’s z transformed

values.
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CHAPTER 23

Independent Subgroups within a Study

Introduction
Combining across subgroups
Comparing subgroups

INTRODUCTION

The first case of a complex data structure is the case where studies report data from

two or more independent subgroups.

Suppose we have five studies that assessed the impact of a treatment on a specific

type of cancer. All studies followed the same design, with patients randomly

assigned to either standard or aggressive treatment for two months. In each study,

the results were reported separately for patients enrolled with stage-1 cancer and for

those enrolled with stage-2 cancer. The stage-1 and stage-2 patients represent two

independent subgroups since each patient is included in one group or the other, but

not both.

If our goal was to compute the summary treatment effect for all stage-1

patients and, separately, for all stage-2 patients, then we would perform two

separate analyses. In this case we would treat each subgroup as a separate

study, and include the stage-1 studies in one analysis and the stage-2 studies in

the other.

This chapter addresses the case where we want to use data from two or more

subgroups in the same analysis. Specifically,

� We want to compute a summary effect for the impact of the intervention for

stage-1 and stage-2 patients combined.

� Or, we want to compare the effect size for stage-1 patients versus stage-2

patients.
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COMBINING ACROSS SUBGROUPS

The defining feature of independent subgroups is that each subgroup contributes

independent information to the analysis. If the sample size within each subgroup is

100, then the effective sample size across two subgroups is 200, and this will be

reflected in the precision of the summary effect. However, within this framework

we have several options for computing the summary effect.

We shall pursue the example of five studies that report data separately for patients

enrolled with stage-1 or stage-2 cancer. The effect size and variance for each

subgroup are shown in Table 23.1 and are labeled simply ES and Variance to

emphasize the point that these procedures can be used with any effect size. If the

outcome was continuous (means and standard deviations), the effect size might be a

standardized mean difference. If the outcome was binary (for example, whether or

not the cancer had metastasized), the effect size might be the log risk ratio.

Using subgroup as unit of analysis (option 1a)

One option is simply to treat each subgroup as a separate study. This is shown in

Table 23.2, where each subgroup appears on its own row and values are summed

across the ten rows.

Then, using formulas (11.3) to (11.5),

M 5
76:666

413:333
5 0:1855;

with variance

VM 5
1

413:333
5 0:0024

Table 23.1 Independent subgroups – five fictional studies.

Study Subgroup ES Variance

Study 1
Stage 1 0.300 0.050
Stage 2 0.100 0.050

Study 2
Stage 1 0.200 0.020
Stage 2 0.100 0.020

Study 3
Stage 1 0.400 0.050
Stage 2 0.200 0.050

Study 4
Stage 1 0.200 0.010
Stage 2 0.100 0.010

Study 5
Stage 1 0.400 0.060
Stage 2 0.300 0.060
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and standard error

SEM 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0024
p

5 0:0492:

Using study as unit of analysis (option 1b)

A second option is to compute a composite score for each study and use this in the

analysis, as in Figure 23.1. The unit of analysis is then the study rather than the

subgroup.

Computing a combined effect across subgroups within a study
The mean and variance of the composite within a study are computed by performing

a fixed-effect meta-analysis on the subgroups for that study. For study 1, this is

shown in Figure 23.1 and in Table 23.3.

We apply formulas (11.3) and (11.4) to yield a mean effect

M 5
8:0000

40:0000
5 0:2000

Table 23.2 Independent subgroups – summary effect.

Study Subgroup ES Variance WT ES*WT

Study 1
Stage 1 0.30 0.05 20.000 6.000
Stage 2 0.10 0.05 20.000 2.000

Study 2
Stage 1 0.20 0.02 50.000 10.000
Stage 2 0.10 0.02 50.000 5.000

Study 3
Stage 1 0.40 0.05 20.000 8.000
Stage 2 0.20 0.05 20.000 4.000

Study 4
Stage 1 0.20 0.01 100.000 20.000
Stage 2 0.10 0.01 100.000 10.000

Study 5
Stage 1 0.40 0.06 16.667 6.667
Stage 2 0.30 0.06 16.667 5.000

Sum 413.333 76.667

Study Subgroup Effect size Variance Mean Variance

Stage-1 0.30 0.05
Study 1

Stage-2 0.10 0.05
0.200 0.025

Figure 23.1 Creating a synthetic variable from independent subgroups.
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with variance

VM 5
1

40:0000
5 0:0250:

Note that the variance for the study (0.025) is one-half as large as the variance for

either subgroup (0.050) since it is based on twice as much information.

This procedure is used to form a composite effect size and variance for each

study, as shown in Table 23.4. Then, we perform a meta-analysis working solely

with these study-level effect sizes and variances.

At this point we can proceed to the meta-analysis using these five (synthetic)

scores. To compute a summary effect and other statistics using the fixed-effect

model, we apply the formulas starting with (11.3). Using values from the line

labeled Sum in Table 23.4,

M 5
76:667

413:333
5 0:1855

with variance

VM 5
1

413:333
5 0:0024

Table 23.3 Independent subgroups – synthetic effect for study 1.

Subgroup Effect Variance Weight Computed
Y VY W WY

Stage 1 0.30 0.05 20.000 6.000
Stage 2 0.10 0.05 20.000 2.000

Sum 40.000 8.000

Table 23.4 Independent subgroups – summary effect across studies.

Study Subgroup ES Variance ES Variance WT ES*WT

Study 1
Stage 1 0.300 0.050

0.200 0.025 40.000 8.000
Stage 2 0.100 0.050

Study 2
Stage 1 0.200 0.020

0.150 0.010 100.000 15.000
Stage 2 0.100 0.020

Study 3
Stage 1 0.400 0.050

0.300 0.025 40.000 12.000Stage 2 0.200 0.050

Study 4
Stage 1 0.200 0.010

0.150 0.005 200.000 30.000Stage 2 0.100 0.010

Study 5
Stage 1 0.400 0.060

0.350 0.030 33.333 11.667
Stage 2 0.300 0.060

Sum 413.333 76.667
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and standard error

SEM 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0024
p

5 0:0492:

Note that the summary effect and variance computed using study as the unit of

analysis are identical to those computed using subgroup as the unit of analysis. This

will always be the case when we use a fixed effect analysis to combine effects at

both steps in the analysis (within studies and across studies).

However, the two methods will yield different results if we use a random

effects analysis to combine effects across studies. This follows from the fact

that T 2 (which is used to compute weights) may be different if based on variation

in effects from study to study than if based on variation in effects from subgroup

to subgroup. Therefore, the decision to use subgroup or study as the unit of

analysis should be based on the context for computing T2. Consider the following

two cases.

� Case 1: Five researchers studied the impact of an intervention. Each researcher

selected five schools at random, and each school is reported as an independent

subgroup within the study. In this situation, between-school variation applies just

as much within studies as across studies. We would therefore use subgroup as the

unit of analysis (option 1a).

� Case 2: Five researchers have published papers on the impact of an intervention.

Each researcher worked in a single school, and the subgroups are grade 1, grade 2,

and so on. We expect the effects to be relatively consistent within a school, but to

vary substantially from one school to the next. To allow for this between-school

variation we should use a random-effects model only across studies. To properly

estimate this component of uncertainty we would use study as the unit of analysis

(option 1b).

Recreating the summary data for the full study (option 2)

Options 1a and 1b differ in the unit of analysis, but they have in common that

the effect size is computed within subgroups. Another option (option 2) is to

use the summary data from the subgroups to recreate the data for the study as

a whole, and then use this summary data to compute the effect size and

variance.

When the subgroup data are reported as 2� 2 tables we can simply collapse cells

to recreate the data for the full sample. That is, we sum cell A over all subgroups to

yield an overall cell A, and repeat the process for cells B, C, and D.

When the subgroup data are reported as means, standard deviations, and sample

size for each treatment group the combined sample size is summed across subgroup.

For example, for treatment group 1,

n1 5 n11 þ n12; ð23:1Þ
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the combined mean is computed as the weighted mean (by sample size) across groups,

X1 5
n11 X11 þ n12 X12

n11 þ n12

; ð23:2Þ

and the combined standard deviation is computed as

S1 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn11 � 1Þ S2

11 þ ðn12 � 1Þ S2
12 þ

n11n12

n11 þ n12

ðX11 � X12 Þ2

n11 þ n12 � 1

vuut ; ð23:3Þ

whereX11, X12 are the means in subgroups 1 and 2 of treatment group 1; S11, S12 the

standard deviations, and n11, n12 the sample sizes; of subgroups 1 and 2.

When the subgroup data are reported as correlations, analogous formulas exist to

recreate the correlation for the full study, but these are beyond the scope of this book.

Option 2 is sometimes used when some studies report summary data for all

subjects combined, while others break down the data by subgroups. If the researcher

believes that the subgroup classifications are unimportant, and wants to have a

uniform approach for all studies (to compute an effect size from a single set of

summary data) then this option will prove useful.

However, it is important to understand that this is a fundamentally different

approach than other options. To return to the example introduced at the start of

this chapter, under options 1a and 1b the effect size was computed within subgroups,

which means that the effect size is the impact of intervention controlling for cancer

stage (even if we then merge the effect sizes to yield an overall effect). By contrast,

under option 2 we merge the summary data and then compute an effect size.

Therefore the effect is ‘the impact of intervention ignoring cancer stage’.

When the studies are randomized trials, the proportion of participants assigned to

each treatment is typically constant from one subgroup to the next. In this case there is

not likely to be a confounder between treatment and subgroup, and so either approach

would be valid. By contrast, in observational studies the proportion of exposed

subjects may vary from one subgroup to the next, which would yield confounding

between exposure and subgroup. In this case option 2 should not be used. (This is the

same issue discussed in Chapter 33, under the heading of Simpson’s paradox.)

COMPARING SUBGROUPS

When our goal is to compare the effect size in different subgroups (rather than

combine them) we have two options, as follows.

Using subgroup as unit of analysis

One option is simply to treat each subgroup as a separate study, where each study

is classified (in this example) as stage 1 or stage 2. We then compute a summary
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effect for all the stage 1 effects, another for all the stage 2 effects, and then compare

the two using a Z-test or analysis of variance as discussed in Chapter 19.

A second option is to compute the effect size within subgroups for each study, and

then to compute the difference in effects within each study. In this case each study

will contribute one effect to the analysis, where the effect is the difference between

subgroups.

The first option is a more general approach. It allows us to work with studies that

report data for any subgroup or combination of subgroups (one study has subgroups

A and B, another B and C, and so on), and then to use all relevant subgroups to

compute the summary effect.

The second option can only be used if all studies report data on the same two

subgroups, which is relatively rare. When this option can be used, however, it will

usually yield a more precise estimate of the difference in effects in random effects

analyses, and is also desirable because differences in effects are not confounded by

possible differences between studies.

SUMMARY POINTS

� When we have independent subgroups within a study, each subgroup con-

tributes independent information. Therefore, if the sample size within each

subgroup is 100, then the effective sample size across five subgroups is 500.

In this sense, independent subgroups are no different than independent

studies.

� To compute a summary effect we typically compute the effect within sub-

groups and then either use these effects as the unit of analysis, or merge effects

within each study and use study as the unit of analysis. A second option is to

combine the summary data from all subgroups to recreate the original study-

level data, and then compute an effect size from this data. The second

approach should be used only in limited circumstances.

� To compare effects across subgroups we typically use subgroup as the unit of

analysis. In some cases we may also be able to compute the difference

between subgroups in each study, and use study as the unit of analysis.
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CHAPTER 24

Multiple Outcomes or Time-Points
within a Study

Introduction
Combining across outcomes or time-points
Comparing outcomes or time-points within a study

INTRODUCTION

The second case of a complex data structure is the case where a study reports data on

more than one outcome, or more than one time-point, where the different outcomes

(or time-points) are based on the same participants.

For example, suppose that five studies assessed the impact of tutoring on student

performance. All studies followed the same design, with students randomly

assigned to either of two groups (tutoring or control) for a semester, after which

they were tested for proficiency in reading and math. The effect was reported

separately for the reading and the math scores, but within each study both outcomes

were based on the same students.

Or, consider the same situation with the following difference. This time, assume

that each study tests only for reading but does so at two time-points (immediately

after the intervention and again six months later). The effect was reported separately

for each time-point but both measures were based on the same students.

For our purposes the two situations (multiple outcomes for the same subjects or

multiple time-points for the same subjects) are identical, and we shall treat them as

such in this discussion. We shall use the term outcomes throughout this chapter, but

the reader can substitute time-points in every instance.

If our goal was to compute a summary effect for the impact of the intervention on

reading, and separately for the impact of the intervention on math scores, we would

simply perform two separate meta-analyses, one using the data for reading and the

other using the data for math. The issues we address in this chapter are how to

Introduction to Meta-Analysis.  Michael Borenstein, L. V. Hedges, J. P. T. Higgins and H. R. Rothstein  
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proceed when we want to incorporate both outcomes in the same analysis.

Specifically,

� We want to compute a summary effect for the intervention on Basic skills, which

combines the data from reading and math.

� Or, we want to investigate the difference in effect size for reading versus math.

In either case, the issue we need to address is that the data for reading and math are

not independent of each other and therefore the errors are correlated.

COMBINING ACROSS OUTCOMES OR TIME-POINTS

The data for the five fictional studies are shown in Table 24.1. In study 1, for

example, the effect size for reading was 0.30 with a variance of 0.05, and the effect

size for math was 0.10 with a variance of 0.05.

While it might seem that we could treat each line of data as a separate study and

perform a meta-analysis with ten studies, this is problematic for two reasons. One

problem is that in computing the summary effect across studies this approach will

assign more weight to studies with two outcomes than to studies with one outcome.

(While this problem does not exist in our set of studies, it would be a problem if the

number of outcomes varied from study to study.)

The second, and more fundamental problem, is that this approach leads to an

improper estimate of the precision of the summary effect. This is because it treats

the separate outcomes as providing independent information, when in fact the

math and reading scores come from the same set of students and therefore are not

independent of each other. If the outcomes are positively correlated (which is

almost always the case with effects that we would want to combine), this

approach underestimates the error (and overestimates the precision) of the sum-

mary effect.

Table 24.1 Multiple outcomes – five fictional studies.

Study Outcome ES Variance

Study 1
Reading 0.300 0.050
Math 0.100 0.050

Study 2
Reading 0.200 0.020
Math 0.100 0.020

Study 3
Reading 0.400 0.050
Math 0.200 0.050

Study 4
Reading 0.200 0.010
Math 0.100 0.010

Study 5
Reading 0.400 0.060
Math 0.300 0.060
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Note. If the correlation between outcomes is negative, this approach will over-

estimate the error (and underestimate the precision) of the summary effect. The

solutions presented below will work for this case as well, but in the discussion we

assume that we are dealing with a positive correlation.

To address these problems, rather than treating each outcome as a separate unit

in the analysis, we’ll compute the mean of the outcomes for each study, and use

this synthetic score as the unit of analysis. In Table 24.2 we show this schema-

tically for study 1.

We start with summary data for two outcomes (math and reading), and compute

an effect size and variance for each. If the data are continuous (means and standard

deviations on the exam) the effect size might be Hedges’ g. If the data are binary

(number of students passing the course) the effect size might be a log risk ratio. And

so on. Then, we compute a synthetic effect size for Basic skills which incorporates

both the math and reading effects. The method used to compute this effect size and

its variance is explained below.

Since every study will be represented by one score in the meta-analysis

regardless of the number of outcomes included in the mean, this approach solves

the problem of more weight being assigned to studies with more outcomes. This

approach also allows us to address the problem of non-independent information,

since the formula for the variance of the synthetic variable will take into account

the correlation among the outcomes.

Computing a combined effect across outcomes
Our notation will be to use Y1, Y2 etc. for effect sizes from different outcomes or

time points within a study, and Yj to refer to the jth of these. Strictly, we should use

Yij, for the jth outcome (or time-point) in the ith study. However, we drop the i

subscript for convenience. The effect size for Basic skills is computed as the mean

of the reading and math scores,

Y ¼ 1

2
ðY1 þ Y2Þ: ð24:1Þ

This is what we would use as the effect estimate from this study in a meta-analysis.

Using formulas described in Box 24.1, the variance of this mean is

VY ¼
1

4
ðVY1
þ VY2

þ 2r
ffiffiffiffiffiffiffi
VY1

p ffiffiffiffiffiffiffi
VY2

p
Þ ð24:2Þ

Table 24.2 Creating a synthetic variable as the mean of two outcomes.

Study Outcome Effect size Variance Mean Variance

Study 1
Math 0.30 0.05

0.20 ?
Reading 0.10 0.05
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BOX 24.1 COMPUTING THE VARIANCE OF A COMPOSITE OR A DIFFERENCE

1. The variance of the sum of two correlated variables

If we know that the variance of Y1 is V1 and the variance of Y2 is V2, then

varðY1 þ Y2Þ ¼V1 þ V2 þ 2r
ffiffiffiffiffi
V1

p ffiffiffiffiffi
V2

p
;

where r is the correlation coefficient that describes the extent to which Y1 and Y2

co-vary. If Y1 and Y2 are inextricably linked (so that a change in one determines

completely the change in the other), then r 51, and the variance of the sum is

roughly twice the sum of the variances. At the other extreme, if Y1 and Y2 are

unrelated, then r 5 0 and the variance is just the sum of the individual variances.

This is because when the variables are unrelated, knowing both gives us twice as

much information, and so the variance is halved compared with the earlier case.

2. The impact of a scaling factor on the variance

If we know the variance of X, then the variance of a scalar (say c) multiplied by X

is given by

varðcXÞ ¼ c
2 � varðXÞ:

3. The variance of the mean of two correlated variables

Combining 1 with 2, we can see that the variance of the mean of Y1 and Y2 is

var
1

2
ðY1 þ Y2Þ

� �
¼ 1

2

� �
2

varðY1 þ Y2Þ ¼
1

4
V1 þ V2 þ 2r

ffiffiffiffiffi
V1

p ffiffiffiffiffi
V2

p� �
:

4. The variance of the sum of several correlated variables

If we know Yi has variance Vi for several variables i = 1, . . . , m, then the formula

in 1 extends as follows:

var
Xm
i¼1

Yi

 !
¼
Xm
i¼1

Vi

1

þ
X
i 6¼j

rij

ffiffiffiffiffi
Vi

p ffiffiffiffiffi
Vj

p� �

where rij is the correlation between Yi and Yj.

5. The variance of the mean of several correlated variables

Combining 4 with 2, we can see that the variance of the mean of several

variables is

var
1

m

Xm

i¼1

Yi

 !
¼ 1

m

� �
2

var
Xm

i¼1

Yi

2

 !
¼ 1

m

� �
2 Xm

i¼1

Vi

1

þ
X
i6¼j

rij

ffiffiffiffiffi
Vi

p ffiffiffiffiffi
Vj

p� � !
:

6. The variance of the difference between two correlated variables

If we know that the variance of Y1 is V1 and the variance of Y2 is V2, then

varðY1 � Y2Þ ¼V1 þ V2 � 2r
ffiffiffiffiffi
V1

p ffiffiffiffiffi
V2

p
;
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BOX 24.1 CONTINUED

where r is the correlation coefficient that describes the extent to which Y1 and Y2

co-vary. If Y1 and Y2 are inextricably linked (so that a change in one determines

completely the change in the other), then r 5 1, and the variance of the difference

is close to zero. At the other extreme, if Y1 and Y2 are unrelated, then r 5 0 and the

variance is the sum of the individual variances. If the correlation is r 5 0.5 then the

variance is approximately the average of the two variances.

where r is the correlation between the two outcomes. If both variances VY1
and VY2

are equal (say to V), then (24.2) simplifies to

VY ¼
1

2
Vð1þ rÞ: ð24:3Þ

In the running example, in study 1 the effect sizes for math and reading are 0.30 and

0.10, the variance for each is 0.02. Suppose we know that the correlation between

them is 0.50. The composite score for Basic skills (Y) is computed as

Y ¼ 1

2
ð0:30þ 0:10Þ ¼ 0:2000;

with variance (based on (24.2))

VY ¼
1

4
ð0:05þ 0:05þ 2� 0:50�

ffiffiffiffiffiffiffiffiffi
0:05
p

�
ffiffiffiffiffiffiffiffiffi
0:05
p

Þ ¼ 0:0375;

or, equivalently (using (24.3)),

VY ¼
1

2
� 0:05� ð1þ 0:50Þ ¼ 0:0375:

Using this formula we can see that if the correlation between outcomes was zero, the

variance of the composite would be 0.025 (which is half as large as either outcome

alone) because the second outcome provides entirely independent information. If

the correlation was 1.0 the variance of the composite would be 0.050 (the same as

either outcome alone) because all information provided by the second outcome is

redundant. In our example, where the correlation is 0.50 (some of the information is

redundant) the variance of the composite falls between these extremes. When we

were working with independent subgroups (earlier in this chapter) the correlation

was zero, and therefore the variance of the composite was 0.025.

These formulas are used to create Table 24.2, where the variance for each composite is

based on formula (24.2) and the weight is simply the reciprocal of the variance.

At this point we can proceed to the meta-analysis using these five (synthetic) scores.

To compute a summary effect and other statistics using the fixed-effect model, we apply

the formulas starting with (11.3). Using values from the line labeled Sum in Table 24.3,
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M ¼ 50:118

275:542
¼ 0:1819;

with variance

VM ¼
1

275:542
¼ 0:0036:

The average difference between the tutored and control groups on Basic skills is

0.1819 with variance 0.0036 and standard error 0.060. The 95% confidence interval

for the average effect is 0.064 to 0.300. The Z-value for a test of the null is 3.019

with a two-sided p-value of 0.003.

Working with more than two outcomes per study
These formulas can be extended to accommodate any number of outcomes. If

m represents the number of outcomes within a study, then the composite effect

size for that study would be computed as

Y ¼ 1

m

Xm
j

Yj

 !
; ð24:4Þ

and the variance of the composite is given by

VY ¼
1

m

� �
2

var
Xm
j¼1

Yi

 !
¼ 1

m

� �
2 Xm

j¼1

Vi þ
X
j6¼k

rjk

ffiffiffiffiffi
Vj

p ffiffiffiffiffi
Vk

p� � !
ð24:5Þ

as derived in Box 24.1. If the variances are all equal to V and the correlations are all

equal to r, then (24.5) simplifies to

VY ¼
1

m
Vð1þ ðm� 1ÞrÞ: ð24:6Þ

Table 24.3 Multiple outcomes – summary effect.

Study Outcome ES Variance ES Correlation Variance Weight ES*WT

Study 1
Reading 0.300 0.050

0.200 0.500 0.038 26.667 5.333Math 0.100 0.050

Study 2
Reading 0.200 0.020

0.150 0.600 0.016 62.500 9.375Math 0.100 0.020

Study 3
Reading 0.400 0.050

0.300 0.600 0.040 25.000 7.500Math 0.200 0.050

Study 4
Reading 0.200 0.010

0.150 0.400 0.007 142.857 21.429Math 0.100 0.010

Study 5
Reading 0.400 0.060

0.350 0.800 0.054 18.519 6.481
Math 0.300 0.060

Sum 275.542 50.118
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Impact of the correlations on the combined effect
One issue to consider is what happens as the correlation moves toward 1.0. Con-

tinuing with the simplified situation where all observations within a study have the

same variance (V) and all pairs of observations within the study have the same

correlation (r), if the m observations are independent of each other (r 5 0), the

variance of the composite is V/m. If the m observations are not independent of each

other, then the variance of the composite is V/m times a correction factor. We will

refer to this correction factor as the variance inflation factor (VIF), which is

VIF ¼ 1þ ðm� 1Þr; ð24:7Þ

where m is the number of observations and r is the correlation between each pair. An

increase in either m or r (or both) will result in a higher inflation of the variance

compared with treating the different outcomes as independent of each other.

In Table 24.4 we explore how the variance inflation factor depends on the value

of r, the correlation coefficient. For the purposes of this illustration we assume the

simplistic situation of a study having just two outcomes (m 5 2) with the same

variance (V 5 0.2) for each outcome. Each column in the table (A-E) corresponds to

a different correlation coefficient between these outcomes.

The variance of the composite for the study is

VY ¼
1

m
V � VIF: ð24:8Þ

Taking as an example column C, the correlation is r 5 0.50, and the variance

inflation factor is

VIF ¼ 1þ ð2� 1Þ � 0:50 ¼ 1:5000:

Table 24.4 Multiple outcomes – Impact of correlation on variance of summary effect.

A B C D E

Effect size (here assumed identical for all
outcomes)

0.4 0.4 0.4 0.4 0.4

Number of outcomes (m ) 2 2 2 2 2
Variance of each outcome (V ) 0.2 0.2 0.2 0.2 0.2

Correlation among outcomes ( r ) 0.000 0.250 0.500 0.750 1.000
Variance inflation factor (VIF ) 1.000 1.250 1.500 1.750 2.000

Variance of composite 0.100 0.125 0.150 0.175 0.200
Standard error of composite 0.316 0.354 0.387 0.418 0.447
Standard error inflation factor 1.000 1.118 1.225 1.323 1.414
Lower limit – 0.220 – 0.293 – 0.359 – 0.420 – 0.477
Upper limit 1.020 1.093 1.159 1.220 1.277
p-value (2-tailed) 0.206 0.258 0.302 0.339 0.371
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Thus, the variance of the composite score for the study is

VY ¼
1

2
� 0:2� 1:5000 ¼ 0:150:

As we move from left to right in the table (from a correlation of 0.00 to 1.00) the

variance inflation factor (VIF) and (by definition) the variance double. If the

inflation factor for the variance moves from 1.00 to 2.00, it follows that the inflation

factor for the standard error (which is the square root of the variance) will move

from 1.00 to 1.44. Therefore, the width of the confidence interval will increase by a

factor of 1.44 (and, correspondingly, the Z-value for the test of the null hypothesis

for this study would decrease by a factor of 1.44).

When the correlation is unknown
This table also provides a mechanism for working with synthetic variables when

we don’t know the correlation among outcomes. Earlier, we assumed that the

correlation between math and reading was known to be 0.50, and used that value

to compute the standard error of the combined effect and the related statistics.

In those cases where we don’t know the correlation for the study in question, we

should still be able to use other studies in the same field to identify a plausible

range for the correlation. We could then perform a sensitivity analysis and might

assume, for example, that if the correlation falls in the range of 0.50 to 0.75 then

the standard error probably falls in the range of 0.39 to 0.42 (columns C to D in the

table).

Researchers who do not know the correlation between outcomes sometimes fall

back on either of two ‘default’ positions. Some will include both math and verbal

scores in the analysis and treat them as independent. Others would use the average

of the reading variance and the math variance. It is instructive, therefore, to consider

the practical impact of these choices.

Treating the two outcomes as independent of each other yields the same precision

as setting the correlation at 0.00 (column A). By contrast, using the average of the

two variances yields the same precision as setting the correlation at 1.00

(column E). In effect, then, researchers who adopt either of these positions as a

way of bypassing the need to specify a correlation, are actually adopting a correla-

tion, albeit implicitly. And, the correlation that they adopt falls at either extreme of

the possible range (either zero or 1.0). The first approach is almost certain to

underestimate the variance and overestimate the precision. The second approach

is almost certain to overestimate the variance and underestimate the precision. In

this context, the idea of working with a plausible range of correlations rather than

the possible range offers some clear advantages.

As we noted at the outset, exactly the same approach applies to studies with multiple

outcomes and to studies with multiple time-points. However, there could be a distinc-

tion between the two when it comes to deciding what is a plausible range of correla-

tions. When we are working with different outcomes at a single point in time, the
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plausible range of correlations will depend on the similarity of the outcomes. When we

are working with the same outcome at multiple time-points, the plausible range of

correlations will depend on such factors as the time elapsed between assessments and

the stability of the relative scores over this time period.

One issue to consider is what happens if the correlations between multiple out-

comes are higher in some studies than in others. This variation will affect the relative

weights assigned to different studies, with more weight going to the study with a lower

correlation. In the running example the variances for reading and math were the same

in studies 1 and 3, but the correlation between reading and math was higher in study 3.

Therefore, study 3 had a higher variance and was assigned less weight in the meta-

analysis.

COMPARING OUTCOMES OR TIME-POINTS WITHIN A STUDY

We now turn to the problem of investigating differences between outcomes or

between time-points. To extend the current example, suppose that each study

reports the impact of the intervention for math and for reading and we want to

know if the impact is stronger for one of these outcomes than for the other. Or, each

study reports the effect at 6 months and 12 months, and we want to know if the effect

changes over time.

When our goal was to compute a combined effect based on both outcomes our

approach was to create a synthetic variable for each study (defined as the mean of

the effect sizes) and to use this as the effect size in the analysis. We will follow the

same approach here, except that the synthetic variable will be defined as the

difference in effect sizes rather than their mean.

The approach is shown in Table 24.5. As before, we start with summary data for

two outcomes (math and reading), and compute an effect size and variance for each.

Then, we compute a synthetic effect size, which is now the difference between the

two effects and its variance, as explained below.

This approach allows us to address the problem of correlated error, since the

formula for the variance of the synthetic variable will take into account the

correlation between the outcomes.

Computing a variance for correlated outcomes

Whenever we use sample data to estimate a difference, the variance reflects the error of

our estimate. If we compute the difference of two unrelated outcomes, each with

Table 24.5 Creating a synthetic variable as the difference between two outcomes.

Study Outcome Effect size Variance Difference Variance

Study 1
Math 0.30 0.05

0.20 ?
Reading 0.10 0.05
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variance V, then the variance of the difference is 2V, which incorporates the two

sources of error. By contrast, if we compute the difference of two (positively) related

outcomes, then some of the error is redundant, and so the total error is less than 2V. If

the correlation between outcomes is 0.50, the variance of the difference would be equal

to V, and as the correlation approaches 1.00, the variance of the difference would

approach zero. The operating principle is that the higher the correlation between the

outcomes, the lower the variance (the higher the precision) of the difference. The

formula for the variance of a difference from correlated outcomes (see Box 24.1) is

VYdiff
¼ VY1

þ VY2
� 2r

ffiffiffiffiffiffiffi
VY1

p ffiffiffiffiffiffiffi
VY2

p
: ð24:9Þ

In words, we sum the two variances and then subtract a value that reflects the

correlated error.

Note the difference from the formula for variance of a mean, where we added the

correlated error and included a scaling factor. When we combine positively corre-

lated outcomes, a higher correlation between outcomes results in a higher variance.

By contrast, when we compute the difference between positively correlated out-

comes, a higher correlation between outcomes results in a lower variance.

To understand why, suppose that we assess patients using two different measures

of depression. If a patient is having a particularly good day when the measures are

taken, both scores will tend to be higher than the patient’s average. If the patient is

having a bad day, both will tend to be lower than the patient’s average. If we

compute a combined effect, the error will build as we increase the number of

outcomes. If this is a good day, both measures will over-estimate the patient’s

level of functioning. By contrast, if we compute a difference, we subtract one effect

from the other, and the day-to-day variation is removed.

Computing a difference between outcomes
With this as background, we can return to the running example, and discuss the

computation of the synthetic effect size and its variance.

The difference between reading and math is computed as

Ydiff ¼ Y1 � Y2; ð24:10Þ

with variance

VYdiff
¼ VY1

þ VY2
� 2r

ffiffiffiffiffiffiffi
VY1

p ffiffiffiffiffiffiffi
VY2

p
: ð24:11Þ

If both variances are equal to the same variance, V, then (24.11) simplifies to

V ¼ 2Vð1� rÞ: ð24:12Þ

In the running example, the difference between reading and math in study 1 is

computed as

Vdiff ¼ 0:30� 0:10 ¼ 0:2000;
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with variance

VYdiff
¼ 0:05þ 0:05� 2� 0:50�

ffiffiffiffiffiffiffiffiffi
0:05
p ffiffiffiffiffiffiffiffiffi

0:05
p

¼ 0:05;

or equivalently,

VYdiff
¼ 2ð0:05Þð1� 0:50Þ ¼ 0:05:

These formulas are used to create Table 24.6, where the variance for each

composite is based on formula (24.11) and the weight is simply the reciprocal

of the variance.

At this point we can proceed to the meta-analysis using these five (syn-

thetic) scores. The scores happen to represent difference scores, but the same

formulas apply. Under the fixed-effect model the formulas starting with (11.3)

yield a summary effect

M ¼ 27:750

232:500
¼ 0:1194;

with variance

VM ¼
1

232:500
¼ 0:0043:

The average difference between the effect size for reading and the effect size for

math is 0.1194 with variance 0.0043 and standard error 0.066. The 95% confidence

interval for the average difference is �0.009 to 0.248. The Z-value for a test of the

null is 1.820 with a two-sided p-value of 0.069.

Working with more than two outcomes per study
The formulas presented for a difference based on two outcomes can be extended to

accommodate any number of outcomes using contrasts. For example, we could look

Table 24.6 Multiple outcomes – difference between outcomes.

ES Variance ES Correlation Variance Weight ES*WT

Study 1
Reading 0.300 0.050

0.200 0.500 0.050 20.000 4.000Math 0.100 0.050

Study 2
Reading 0.200 0.020

0.100 0.600 0.016 62.500 6.250Math 0.100 0.020

Study 3
Reading 0.400 0.050

0.200 0.600 0.040 25.000 5.000Math 0.200 0.050

Study 4
Reading 0.200 0.010

0.100 0.400 0.012 83.333 8.333Math 0.100 0.010

Study 5
Reading 0.400 0.060

0.100 0.800 0.024 41.667 4.167Math 0.300 0.060

Sum 232.500 27.750
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at the difference between (a) math scores and (b) the mean of reading and verbal

scores. However, this is beyond the scope of this volume.

Impact of the correlations on the combined effect

One issue to consider is what happens if the correlation between two outcomes is

higher in some studies than in others. This variation will affect the relative weights

assigned to different studies, with more weight going to the study with a higher

correlation. In the running example the variances for reading and math were the

same in studies 1 and 3, but the correlation between reading and math was higher in

study 3. Therefore, study 3 had a lower variance and was assigned more weight in

the meta-analysis. This is the opposite of what happens for a composite.

A second issue to consider is what happens as the set of correlations as a whole

moves toward 1.0. Continuing with the simplified situation where both observations

within a study have the same variance (V), if the two observations are independent

of each other, the variance of the composite is 2V. If the observations are not

independent of each other, then the variance of the composite is 2V times a

correction factor. We will refer to this correction factor as the variance inflation

factor (VIF),

VIF ¼ 1� r; ð24:13Þ

where r is the correlation between the two components. An increase in r will result

in a deflation of the variance compared with treating the different outcomes as

independent of each other.

In Table 24.7 we explore how the variance inflation factor depends on the value

of r, the correlation coefficient. For the purposes of this illustration we assume the

simplistic situation of a study having the same variance (VY 5 0.2) for each

outcome. Each column in the table (A-E) corresponds to a different correlation

coefficient between these outcomes.

The variance of the difference between the outcomes is

VYdiff
¼ 2� VY � VIF: ð24:14Þ

Taking as an example column C, the correlation is r 5 0.50 and the variance

inflation factor is

VIF ¼ 1� 0:50 ¼ 0:5000:

Thus the variance of the composite score for one study is

VYdiff
¼ 2� 0:20� 0:50 ¼ 0:20:

As we move from left to right in the table (from a correlation of 0.00 to 0.75) the

variance inflation factor (VIF) moves from 1.00 to 0.25. If the inflation factor for the

variance moves from 1.00 to 0.25, it follows that the inflation factor for the standard

error (which is the square root of the variance) will move from 1.00 to 0.50.
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Therefore, the confidence interval will narrow by 50 %, and the Z-value for the test

of the null will double.

Note. In this example we focused on correlations in the range of 0.0 to 0.75,

columns A-D in the table. As the correlation approaches 1.0 (column E) the

variance will approach zero. This means that the width of the confidence interval

will approach zero, the Z-value will approach infinity, and the p-value will approach

zero. These apparent anomalies reflect what would happen if all error were removed

from the equation. In Table 24.7, the correlation displayed as 1.000 is actually

entered as 0.9999.

When the correlation is unknown
Table 24.7 also provides a mechanism for working with synthetic variables when

we don’t know the correlation among outcomes. Earlier, we assumed that the

correlation between math and reading was known to be 0.50, and used that value

to compute the standard error of the difference and related statistics. In those cases

where we don’t know the correlation for the study in question, we should still be

able to use other studies in the same field to identify a plausible range for the

correlation. We could then perform a sensitivity analysis and say, for example, that

if the correlation falls in the range of 0.50 to 0.75 then the two-tailed p-value

probably falls in the range of 0.046 to 0.005 (columns C to D in the table).

Researchers who do not know the correlation between outcomes sometimes treat

the outcomes as coming from independent subgroups. It is instructive, therefore, to

consider the practical impact of this choice. Treating the two outcomes as indepen-

dent of each other yields the same precision as setting the correlation at 0.00

(column A). In effect, then, researchers who take this approach as a way of

bypassing the need to specify a correlation, are actually adopting a correlation,

albeit implicitly. And, the correlation that they adopt is zero. As such, it is almost

certain to overestimate the variance and underestimate the precision of the

Table 24.7 Multiple outcomes – Impact of correlation on the variance of difference.

A B C D E

Difference (Y ) 0.4 0.4 0.4 0.4 0.4
Variance of each outcome (V ) 0.2 0.2 0.2 0.2 0.2

Correlation between outcomes 0.000 0.250 0.500 0.750 1.000
Variance inflation factor 1.000 0.750 0.500 0.250 0.000

Variance of difference (VYdiff ) 0.400 0.300 0.200 0.100 0.000
Standard error of difference 0.283 0.245 0.200 0.141 0.003
Standard error inflation factor 1.000 0.866 0.707 0.500 0.010
Lower limit �0.155 �0.0802 0.008 0.124 0.394
Upper limit 0.955 0.8802 0.792 0.676 0.406
p-value (2-tailed) 0.158 0.103 0.046 0.005 0.000
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difference. In this context, (as in the case of a combined effect) the idea of working

with a plausible range of correlations offers some clear advantages.

SUMMARY POINTS

� When we have effect sizes for more than one outcome (or time-point) within a

study, based on the same participants, the information for the different effects

is not independent and we need to take account of this in the analysis.

� To compute a summary effect using multiple outcomes we create a synthetic

effect size for each study, defined as the mean effect size in that study, with a

variance that takes account of the correlation among the different outcomes.

We then use this effect size and variance to compute a summary effect across

studies. Higher correlations yield less precise estimates of the summary

effect.

� To compute the difference in effects we create a synthetic effect size for each

study, defined as the difference between effect sizes in that study, with a

variance that takes account of the correlation among the different outcomes.

We then use this effect size and variance to assess the difference in effect

sizes. Higher correlations yield more precise estimates of the difference in

effects.

Further Reading

Cooper, H. (1982) Scientific Guidelines for conducting integrative research reviews. Review of

Educational Research, 52(2), 291–302.

Glaser, L. & Olkin, I. (1994) Stochastically dependent effect sizes. In Cooper, H. &

Hedges, L. V., The Handbook of Research Synthesis. New York: Russell Sage Foundation.
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CHAPTER 25

Multiple Comparisons within a Study

Introduction
Combining across multiple comparisons within a study
Differences between treatments

INTRODUCTION

The final case of a complex data structure is the case where studies use a single

control group and several treatment groups. For example, suppose we are working

with five studies that assessed the impact of tutoring on student performance. Each

study included three groups – a control group (a free study period), intervention

A (tutoring focused on that day’s school lesson) and intervention B (tutoring based

on a separate agenda).

If our goal was to compute a summary effect for A versus control and separately

for B versus control, we would simply perform two separate meta-analyses, one

using the A versus control comparison from each study, and one using the B versus

control comparison from each study.

The issues we address in this chapter are how to proceed when we want to

incorporate both treatment groups in the same analysis. Specifically,

� We want to compute a summary effect for the active intervention (combining A

and B) versus control
� Or, we want to investigate the difference in effect size for intervention A versus

intervention B

COMBINING ACROSS MULTIPLE COMPARISONS WITHIN A STUDY

The issue we need to address is that the effect for A versus control and the effect for

B versus control are not independent of each other. If each group (A, B and control)

has 200 participants and we treated the two effects as independent, our effective

sample size would appear to be 800 (since we count the control group twice) when

in fact the true sample size is 600.
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The problem, and the solution, are very similar to the ones we discussed for

multiple outcomes (or time-points) within a study. If our goal is to compare any

treatment versus control, we can create a composite variable which is simply the

mean of A versus control and B versus control. The variance of this composite

would be computed based on the variance of each effect size as well as the

correlation between the two effects. At that point, all the formulas for combining

data from multiple outcomes would apply here as well.

The difference between multiple outcomes and multiple comparison groups is the

following. In the case of multiple outcomes, the correlation between outcomes could

fall anywhere in the range of zero (or even a negative correlation) to 1.0. We suggested

that the researcher work with a range of plausible correlations, but even this approach

would typically yield a nontrivial range of possible correlations (say, 0.25 to 0.75) and

variances.Bycontrast, in thecaseofmultiplecomparisongroups, thecorrelationcanbe

estimated accurately based on the number of cases in each group. For example, if

group A, group B and the control group each have 200 participants, the correlation

between A versus control and B versus control is 0.50. (This follows from the fact that

the correlation between group A and group B is 0, while the correlation between control

and control is 1, yielding a combined correlation midway between the two, or 0.50.)

Therefore, we can work with a correlation of 0.50 without the need to conduct a

sensitivity analysis based on a range of possible correlations.

This approach can be extended for the case where the sample size differs from one

group to the next. For example, we can use a weighted mean of the effects rather than a

simple mean, to give more weight to the treatments with more subjects. In this case, we

would also need to adjust the variance to take account of the weighting. If the sample

size differs from group to group the correlation will no longer be 0.50, but can be

estimated precisely based on the data, without the need to resort to external correlations.

An alternate approach for working with multiple comparison groups is to collapse

data from the treatment groups and use this data to compute an effect size and

variance. If we are working with binary data from one control group and two

treatment groups in a 2� 3 table we would collapse the two treatment groups to

create a 2� 2 table, and then compute the effect size from that. Or, if we are

working with means and standard deviations for three groups (A, B and control)

we would collapse the data from A and B to yield a combined mean and standard

deviation, and then compute the effect size for the control group versus this merged

group (see option 2 for independent subgroups, (23.1), (23.2), and (23.3)). This

approach will yield essentially the same results as the method proposed above.

DIFFERENCES BETWEEN TREATMENTS

We now turn to the problem of investigating differences between treatments when

the different treatments use the same comparison group. To extend the current

example, suppose that we have two treatment groups (A and B) and a control group.

We want to know if one of the treatments is superior to the other.
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While the approach used for computing a combined effect with multiple compar-

isons was similar to that for multiple outcomes, this is not the case when we turn to

differences among the treatments. In the case of multiple outcomes, we had an effect

size for reading (defined as the difference between treated and control) and an effect

size for math (the difference between treated and control). Our approach was to

work with the difference between the two effect sizes. In the case of multiple

comparisons the analogous approach would be to compute the effect size for A

versus control, and the effect size for B versus control, and then work with the

difference between the two effect sizes.

While this approach would work, a better (potentially more powerful) approach is

to ignore the control group entirely, and simply define the effect size as the

difference between A and B. If we are working with binary data we would create

a 2 x 2 table for A versus B and use this to compute an effect size. If we are working

with means and standard deviations we would compute an effect size from the

summary data in these two groups, ignoring the control group entirely.

This approach will only work if all studies have the same groups (here, A and B),

which allows us to create the same effect size (A versus B) for each study. In

practice, we are likely to encounter problems since some studies might compare

A versus B, while others compare A versus control and still others compare B versus

control. Or, some studies might include more than two comparison groups. Methods

developed to address these kinds of issues are beyond the scope of this book, but are

covered in the further readings.

SUMMARY POINTS

� When a study uses one control group and more than one treatment group, the

data from the control group is used to compute more than one effect size.

Therefore, the information for these effect sizes is not independent and we

need to take this into account when computing the variance.

� To compute a combined effect, ignoring differences among the treatments, we

can create a synthetic effect size for each study, defined as the mean effect

size in that study (say, the mean of treatment A versus control and of treatment

B versus control), with a variance that takes account of the correlation among

the different treatments. We can then use this synthetic effect size and

variance to compute a summary effect across studies. This is the same

approach used with multiple outcomes.

� To look at differences among treatments the preferred option is to perform a

direct comparison of treatment A versus treatment B, removing the control

group from the analysis entirely. In some cases this will not be possible for

practical reasons. In this case we can revert to the synthetic effect size, or can

apply advanced methods.
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CHAPTER 26

Notes on Complex Data Structures

Introduction
Summary effect
Differences in effect

INTRODUCTION

In this Part we discussed three cases where studies provide more than one unit of

data for the analysis. These are the case of multiple independent subgroups within a

study, multiple outcomes or time-points based on the same subjects, and two or

more treatment groups that use the same comparison group.

SUMMARY EFFECT

One issue we addressed was how to compute a summary effect using all of the

data. For independent subgroups this meant looking at the impact of treatment

versus no treatment, and ignoring any differences between stage-1 patients and

stage-2 patients. For multiple outcomes this meant looking at the impact of the

intervention on basic skills, and ignoring any differences between the impact on

math versus reading. For multiple treatment groups it meant looking at the impact

of treatment and control, and ignoring any differences among variants of the

treatment.

In all cases, the key issue was the need to address any possible redundancy of

information, since the precision of the combined effect is strongly dependent on

the amount of information. To highlight the difference among the three cases,

we used the same numbers in the worked examples as we moved from one

chapter to the next. For example, for study 1, we assumed a variance of 0.05

between the two units of information, whether for two independent groups or for

two outcomes.
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The formula for the variance of a composite is the same in all cases, namely (in its

simple form)

VY ¼
1

2
VYð1þ rÞ: ð26:1Þ

Consider, then, how this formula plays out for independent subgroups, for multiple

outcomes, and for multiple comparisons.

� For multiple independent subgroups r is always zero, and so the variance of the

composite is 0.025.

� For multiple outcomes r can take on any value. We assume that it falls

somewhere in the range of 0.00 to 1.00, and assume further that the

researcher can provide a range of plausible values for r. For example, we

might have evidence that r is probably close to 0.50, with a plausible range

of 0.25 to 0.75. In that case the variance would probably be close to 0.038,

with a plausible range of 0.031 to 0.044.

� For multiple comparisons r can be determined based on the number of treatment

groups and the number of subjects in each groups. If there is one control group

and two treatment groups, and the subjects are divided evenly across groups, then

r would be 0.50 and the variance would be 0.038. In other cases r could move

either up or down, but can always be computed, and therefore we don’t need to

work with a range of values.

DIFFERENCES IN EFFECT

The second issue we addressed was how to look at the difference between effects.

For independent subgroups this meant looking at whether the treatment was more

effective for one of the subgroups (stage-1 or stage-2 patients) than the other. For

multiple outcomes this meant looking at whether the intervention had more of an impact

on one outcome (reading or m ath) than the other. For multiple treatment groups it

meant looking at whether one of the treatments was more effective than the other.

Again, the key issue was the need to address any possible redundancy of

information, since the precision of the difference is strongly dependent on the

amount of information. To highlight the difference among the three cases we used

the same numbers in the worked examples as we moved from one chapter to the

next. For example, we assumed a variance of 0.05 for each subgroup, or for each

outcome, or for each comparison.

The formula for the variance of a difference is the same in all cases, namely (in its

simple form)

VYdiff
¼2VYð1� rÞ: ð26:2Þ

This formula incorporates the term (1�r), which means that a higher correlation

will yield a more precise estimate of the difference. This is the reverse of the case for
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a composite effect, where the formula incorporates the term (1þ r), and a higher

correlation will yield a less precise estimate.

� For multiple independent subgroups r is always zero, and so the variance of the

difference is 0.100.

� For multiple outcomes r can take on any value. We assume that it falls some-

where in the range of 0.00 to 1.00, and assume further that the researcher can

provide a range of plausible values for r. For example, we might have evidence

that r is probably close to 0.50, with a plausible range of 0.25 to 0.75. In that case

the variance would probably be close to 0.050, with a plausible range of 0.075 to

0.025.

� For multiple comparisons we have essentially the same situation as for multiple

outcomes, except that we can actually compute the correlation needed for the

formula. However, there are other approaches available that allow for head-to-

head comparisons of the treatment groups.
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PART 6

Other Issues
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CHAPTER 27

Overview

The first chapter in this Part addresses the issue of vote counting. Vote counting is

the name used to describe the idea of seeing how many studies yielded a significant

result, and how many did not. We explain why this approach is always a bad idea. In

fact, if the techniques used in meta-analysis are extensions of procedures in primary

studies, then vote counting for multiple studies is an extension of a mistake that is

ubiquitous in primary studies.

In the next chapter we address the issue of statistical power in meta-analysis.

A meta-analysis often yields a more powerful test of the null hypothesis than any of

the separate studies. Here, we explain why this is true, and offer some examples to

show how important this can be. At the same time, we caution that this is not always

the case. While there is a general perception that all meta-analyses have high power

to yield a statistically significant effect, this is not always the case for the main

effect, and is rarely the case for other tests (such as tests for heterogeneity). We

discuss the factors that drive power in a meta-analysis, and compare these with the

factors that drive power in a primary study.

Another chapter outlines the issue of publication bias. Several lines of evidence

demonstrate that studies that yield larger effect sizes are more likely to be pub-

lished, and incorporated in a meta-analysis, than similar studies that yield smaller

effect sizes. We discuss the evidence for this phenomenon, and methods to assess its

likely impact on any given meta-analysis.
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CHAPTER 28

Vote Counting – A New Name
for an Old Problem

Introduction
Why vote counting is wrong
Vote counting is a pervasive problem

INTRODUCTION

One question we often ask of the data is whether or not it allows us to reject the null

hypothesis of no effect. Researchers who address this question using a narrative

review need to synthesize the p-values reported by the separate studies. Since these

are discrete pieces of information and the narrative review provides no statistical

mechanism for synthesizing these values, narrative reviewers often resort to a

process called vote counting. Under this process the reviewer counts the number

of statistically significant studies and compares this with the number of statistically

nonsignificant studies.

In some cases this process has been formalized, such that one actually counts the

number of significant and nonsignificant p-values and picks the winner. In some

variants, the reviewer would look for a clear majority rather than a simple majority.

Or, the reviewer might not work directly with the p-values, but with the discussion

section of the papers which are based on the p-values.

One might think that summarizing p-values through a vote-counting procedure

would yield more accurate decision than any one of the single significance tests being

summarized. This is not generally the case, however. In fact, Hedges and Olkin

(1980) showed that the power of vote-counting considered as a statistical decision

procedure can not only be lower than that of the studies on which it is based, the power

of vote counting can tend toward zero as the number of studies increases. In other

words, vote counting is not only misleading, it tends to be more misleading as the

amount of evidence (the number of studies) increases!
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In any event, the idea of vote counting is fundamentally flawed and the variants

on this process are equally flawed (and perhaps even more dangerous, since the

basic flaw is less obvious when hidden behind a more complicated algorithm or is

one step removed from the p-value). Our goal in this chapter is to explain why this is

so, and to provide a few examples.

WHY VOTE COUNTING IS WRONG

The logic of vote counting says that a significant finding is evidence that an effect

exists, while a nonsignificant finding is evidence that an effect is absent. While the

first statement is true, the second is not. While a nonsignificant finding could be due

to the fact that the true effect is nil, it can also be due simply to low statistical power.

Put simply, the p-value reported for any study is a function of the observed effect

size and the sample size. Even if the observed effect is substantial, the p-value will

not be significant unless the sample size is adequate. In other words, as most of us

learned in our first statistics course, the absence of a statistically significant effect is

not evidence that an effect is absent.

For example, suppose five randomized controlled trials (RCTs) had been performed

to test the impact of an intervention, and that none were statistically significant (the

p-value in each case is 0.265) as illustrated in Figure 28.1. The vote count is 5 to 0

against an effect, and one might assume that the intervention has no effect.

By contrast, the meta-analysis (Figure 28.1), by combining the information into a

single analysis, allows us to perform a proper test of the null. Not only is this approach

valid, but the test of the summary effect is often much more powerful than tests

performed on any of the separate studies. When we merge the data, the effect size

stays the same, but the confidence interval narrows and no longer includes the null.

The p-value for each study alone is 0.265, but the p-value for the summary effect is

0.50 1.0 2.0

RR N p -value

RCT A 0.80 800 0.265

RCT B 0.80 800 0.265

RCT C 0.80 800 0.265

RCT D 0.80 800 0.265

Summary 0.80 4,000 0.013

RCT E 0.80 800 0.265

Risk ratio and 95% confidence interval

Favours Treatment Favours Control

Figure 28.1 The p-value for each study is > 0.20 but the p-value for the summary effect is< 0.02.
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0.013. Clearly, the absence of significance in each study is due to a lack of precision

rather than a small effect.

For purposes of explaining why vote counting is a bad idea, we could end the

chapter here. However, because vote counting in its various forms is so pervasive,

we will expand on this idea to show how the basic mistake that underlies vote

counting affects much of the literature, and how meta-analysis can help address this

problem.

VOTE COUNTING IS A PERVASIVE PROBLEM

While the term vote counting is associated with narrative reviews it can also be

applied to the single study, where a significant p-value is taken as evidence that an

effect exists, and a nonsignificant p-value is taken as evidence that an effect does

not exist. Numerous surveys in a wide variety of substantive fields have repeatedly

documented the ubiquitous nature of this mistake.

In medicine, for example, Freiman, Chalmers, Smith and Kuebler (1978) sur-

veyed reports of controlled clinical trials that had been published in a number of

medical journals (primarily The Lancet, the New England Journal of Medicine, and

the Journal of the American Medical Association during the period 1960–1977),

and selected 71 that had reported negative results. The authors found that if the true

drug effect had been in the region of 50% (e.g. a mortality rate of 30% for placebo

vs. 15% for drug), median power would have been 60%. In other words, even if the

drug cut the mortality rate in half there was still a 40% probability that the study

would have failed to obtain a statistically significant result.

The authors went on to make the following point: Despite the fact that power was

terribly low, in most cases the absence of statistical significance was interpreted as

meaning that the drug was not effective. They wrote: ‘The conclusion is inescapable

that many of the therapies discarded as ineffective after inconclusive ‘‘negative’’

trials may still have a clinically meaningful effect’ (p. 694). In fact, it is possible (or

likely) that some of the therapies discarded on this basis might well have had very

substantial therapeutic effects.

In the social sciences Cohen (1962) surveyed papers published in the Journal of

Abnormal and Social Psychology in 1960. Mean power to detect a small, medium,

or large effect, respectively, was 0.18, 0.48, and 0.83. Cohen noted that despite the

low power, when the studies with negative results are published, readers tend to

interpret the absence of statistical significance as evidence that the treatment has

been proven ineffective.

In the years that followed a kind of cottage industry developed of publishing

papers that documented the fact of low power in any number of journals in the area

of behavioral research. Many of these are cited in Sedlmeier and Gigerenzer (1989)

and Rossi (1990). Similar papers were published to document the same problem in

the field of medicine (Borenstein, 1994; Hartung, Cottrell & Giffen, 1983; Phillips,
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Scott, & Blasczcynski, 1983; Reed & Slaichert, 1981; Reynolds, 1980) and psy-

chiatry (Kane & Borenstein, 1985).

Sedlmeier and Gigerenzer (1989) published a paper entitled Do studies of

statistical power have an effect on the power of statistical studies? They found

that in the 25 years since Cohen’s initial survey power had not changed in any

substantive way. Similarly, Rossi (1990) reviewed papers published in 1982 in

the Journals of Abnormal Psychology, Consulting and Clinical Psychology, and

Personality and Social Psychology. Mean power to detect small, medium, and large

effects, respectively, was 0.17, 0.57, and 0.83.

This led one of the current authors (Borenstein, 2000) to propose four theorems,

as follows.

1. Power in many fields of research is abysmally low.

2. Rule (1) appears to be impervious to change.

3. The absence of significance should be interpreted as more information is required

but is interpreted in error as meaning no effect exists.

4. Rule (3) appears to be impervious to change.

In a sense, then, vote counting did not originate with the narrative review. Rather,

the basic mistake has existed for decades, where it found a home in primary

research. When the field moved on to narrative reviews, this basic mistake was

named and codified but remained basically unchanged.

There is, however, one important difference. When we are working with a

single study and we have a nonsignificant result we don’t have any way of

knowing whether or not the effect is real. The nonsignificant p-value could reflect

either the fact that the true effect is nil or the fact that our study had low power.

While we caution against accepting the former (that the true effect is nil) we

cannot rule it out.

By contrast, when we use meta-analysis to synthesize the data from a series of

studies we can often identify the true effect. And in many cases (for example if the

true effect is substantial and is consistent across studies) we can assert that the

nonsignificant p-value in the separate studies was due to low power rather than the

absence of an effect.

In the streptokinase meta-analysis on page 10, for example, it is clear that the

treatment does reduce the risk of death. It is fair to say that the reason that 27 studies

had nonsignificant p-values was not because the treatment had no effect, but rather

was because of low statistical power. (In the next chapter we actually compute the

power for the streptokinase studies.)

Moving beyond the null

In this chapter we have shown that if our goal is to test the null hypothesis, then

meta-analysis (unlike the narrative review) provides a statistically sound mechan-

ism for this purpose. However, we want to emphasize that meta-analysis allows us
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to move beyond a test of the null. It allows us to assess the magnitude of the effect

(which is often a more relevant question) and to determine whether or not the effect

size is consistent across studies.

SUMMARY POINTS

� Vote counting is the process of counting the number of studies that are

statistically significant and comparing this with the number that are not

statistically significant.

� Vote counting treats a nonsignificant p-value as evidence that an effect is

absent. In fact, though, small, moderate, and even large effect sizes may yield

a nonsignificant p-value due to inadequate statistical power. Therefore, vote

counting is never a valid approach.
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CHAPTER 29

Power Analysis for Meta-Analysis

Introduction
A conceptual approach
In context
When to use power analysis
Planning for precision rather than for power
Power analysis in primary studies
Power analysis for meta-analysis
Power analysis for a test of homogeneity

INTRODUCTION

A common goal in research (both in primary studies and in meta-analysis) is to test the

null hypothesis of no effect. If that is our goal, then it is important to ensure that the

study has good statistical power (a sufficiently high likelihood of yielding a statistically

significant result). In this chapter we pursue two themes related to statistical power.

The first theme is conceptual. We discuss the factors that determine power and

explore how the value of these factors may change as we move from a primary study

to a meta-analysis. On this basis we can see why power for a meta-analyses is

sometimes (but not always) higher than power in any of the included studies. Here,

we address only power for a test of the main effect.

The second theme is practical. We briefly review the process of power analysis

for primary studies, and then show how the same process can be extended for meta-

analysis. Here, we focus primarily on power for a test of the main effect, but also

include material on tests of heterogeneity.

A CONCEPTUAL APPROACH

Background

The significance test (performed after the study is completed) takes the form
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Z 5
M

SEM

ð29:1Þ

where Z is the test statistic, M is the effect size, and SEM is the standard error of

the effect size. The observed value of Z is then compared with the criterion alpha

(�). If alpha has been set at 0.05, then a p-value lower than 0.05 (a Z-value beyond

±1.96) will be statistically significant.

Therefore, the likelihood that the results will be statistically significant depends

on the following.

� The effect size. As M increases, Z increases, and the likelihood of statistical

significance increases.

� The precision of the estimate. As the precision increases (as SEM decreases),

Z increases, and the likelihood of statistical significance increases.

� The criterion for significance (�). As�moves away from zero, the likelihood that

p will be less than � increases, and the likelihood of statistical significance

increases.

The difference between the significance test and a power analysis is that we perform

the significance test after the data have been collected, at which point M, SEM, and

� are known. By contrast, when we compute power (usually, before the study has

been performed) we need to make an assumption about M, an educated guess about

SEM, and select a value for �. As such, we are working with projected values rather

than observed values. Still, the factors that control power are the same as those that

control the significance test. To wit, as the expected effect size increases, as the

precision of the estimate increases, and/or as � is moved away from zero, the higher

the power.

Power for meta-analyses as compared with primary studies

With this as background we can anticipate how power considerations differ between

primary studies and meta-analysis. Typically, the expected effect size and the

criterion for significance (�) will be the same for the primary study and for the

meta-analysis. However, the precision will differ (sometimes substantially) as we

move from primary studies to a meta-analysis.

To get a sense of how the precision changes as we move from the individual studies

to the summary effect we can work with the confidence intervals on the forest plot.

Concretely, the width of each confidence interval (the distance from the lower limit to

the upper limit) is proportional to the standard error (the denominator in (29.1)).

For example, consider the Cannon et al. meta-analysis that we discussed

in Chapter 1. The width of the confidence interval is substantially narrower for

the summary effect than for any of the included studies. Therefore, power to test the

summary effect in the meta-analysis is substantially higher than power to test the effect

in any of the primary studies. Assuming a risk ratio of 85% and a baseline risk of 9.4%
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(the mean values actually observed in these studies), power for the four studies (Prove-

it, A to Z, TNT, Ideal) was 36%, 39%, 70%, and 65%, respectively. Therefore, it is not

surprising that three of the studies failed to meet the criterion for significance, with only

one (TNT) yielding a p-value under 0.05. By contrast, if we synthesize the effects in a

meta-analysis, the combined sample size is 13,774, the statistical power is 83%, and the

observed p-value is < 0.0001.

Similarly, in Chapter 2 we discussed a meta-analysis of 33 trials that tested the

impact of streptokinase (versus placebo) to prevent death following a heart attack.

Again, the confidence interval is narrower for the summary effect than for any of the

included studies, and (except for the largest primary studies) the difference is

substantial. Assuming that streptokinase actually reduces the risk of death by

some 20% (which is the summary risk ratio for this data), then based on the sample

size and event rates in the studies we can determine that only three had power

exceeding 80%. Of the remaining 30 studies, none had power in the range of 60% to

80%, 3 had power in the range of 40% to 60%, 6 had power in the range of 20% to

40%, and 21 had power of less than 20%. Therefore, it is not surprising that only six

of the 33 studies were statistically significant. By contrast, when we combine the

effects from these studies in a meta-analysis the power for the summary effect

exceeds 99.9% and the p-value for the summary effect is 0.0000008.

The fact that a meta-analysis will often have high power is important because (as

in these examples) primary studies often suffer from low power. While researchers

are encouraged to design studies with power of at least 80%, this goal is often

elusive. Many studies in medicine, psychology, education and an array of other

fields have power substantially lower than 80% to detect large effects, and sub-

stantially lower than 50% to detect smaller effects that are still important enough to

be of theoretical or practical importance. By contrast, a meta-analysis based on

multiple studies will have a higher total sample size than any of the separate studies

and the increase in power can be substantial.

The problem of low power in the primary studies is especially acute when

looking for adverse events. The problem here is that studies to test new drugs are

powered to find a treatment effect for the drug, and do not have adequate power to

detect side effects (which have a much lower event rate, and therefore lower

power). For example, a recent meta-analysis synthesized data from 44 studies and

suggested that Avandia may increase the risk of death or myocardial infarction

(MI). Because the risk of death or MI is very low, power in the individual studies

was quite low. Two of the studies had power of 15% and 18%. The other 42 studies

had power of less than 8%. (These computations are based on the event rates and

effect sizes combined across the 44 studies.) By contrast, the meta-analysis had

power of 66% and a p-value that either met or approached the 0.05 criterion (this

depends on the method used in the analysis).

While the examples such as the streptokinase analysis and the statins analysis,

where the meta-analysis had high power, are representative of many meta-analyses,

they are not representative of all meta-analyses. Assuming a nontrivial effect size,
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power is primarily a function of the precision, and so to understand why some

meta-analyses will have high power while others (with a similar effect size) will not,

we need to consider the factors that control precision, as follows.

Power under the fixed-effect model

When we are working with a fixed-effect analysis, precision for the summary effect

is always higher than it is for any of the included studies. Under the fixed-effect

analysis precision is largely determined by the total sample size (accumulated over

all studies in the analysis), and it follows the total sample size will be higher across

studies than within studies. If the analysis includes a large number of small studies,

the difference in power can be substantial.

Consider a meta-analysis of k studies with the simplest design, such that each

study comprises a single sample of n observations with standard deviation s. When

the effect size is consistent across studies we saw in Chapter 13 that the standard

error of the mean, SEM, is given by (Box 13.1)

SEM 5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

k � n

r
: ð29:2Þ

Because k (the number of studies) and n (the sample size in each study) appear

together, SEM (and therefore the power) of a fixed-effect meta-analysis will depend

only on the total sample size k� n. The power will be the same for a meta-analysis

with 10 studies of 100 persons each, as it would be for one primary study with 1000

persons.

As the term k� n approaches infinity the standard error will approach zero and

(provided that the effect size is nonzero) power will approach 100%.

Power under the random-effects model

By contrast, when we move to a random-effects analysis we need to deal with two

sources of error. One is the error within studies, and the other is the variance

between studies. (The latter is real variance, but we refer to it here as error in the

sense that it leads to uncertainty in the value of the mean effect.) Now, we can no

longer use sample size as a surrogate for precision. Rather, we need to compute the

precision based on both components.

Under the random-effects model we saw in Chapter 13 that the standard error of

the summary effect is given by

SEM� 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

k � n
þ t2

k

r
: ð29:3Þ

The first term is identical to that for the fixed-effect model and, again, with a large

enough sample size (either enough studies or a large enough sample within studies),

this term will approach zero. By contrast, the second term (which reflects the
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between-studies variance) will only approach zero if the estimated value of t2 is

zero, or as the number of studies approaches infinity.

These formulas do not apply exactly in practice, but the conceptual point does.

Concretely, in a random-effects meta-analysis, power depends on within-study

error and between-studies variation. If the effect sizes are reasonably consistent

from study to study, and/or if the analysis includes a substantial number of studies,

then the second of these will tend to be small, and power will be driven by the

cumulative sample size. In this case the meta-analysis will tend to have higher

power than any of the included studies. This was the case for the statins analysis and

for the streptokinase analysis. However, if the effect size varies substantially from

study to study, and the analysis includes only a few studies, then this second aspect

will limit the potential power of the meta-analysis. In this case, power could be

limited to some low value even if the analysis includes tens of thousands of persons.

Above, we suggested that one can get a sense for the power of the summary effect

(as compared with power for the included studies) by comparing the confidence

interval width in the two. The same logic extends to the difference in power between

fixed-effect and random-effects analyses. If the width of the confidence interval is

roughly the same in the two, then power will be roughly the same. By contrast, if the

random-effects interval is substantially wider then power will be lower and,

depending on the effect size, may not approach acceptable levels.

IN CONTEXT

Power to test main effects

There is a general perception that meta-analyses have high power to detect main

effects, probably stemming from some well known meta-analyses that did include

large numbers of studies and therefore had high power. The Cannon et al. and the

streptokinase studies are two examples. A number of recent reviews in the social

sciences (e.g. Wilson et al., 2003a, 2003b) have included more than 200 studies each.

However, most meta-analyses have far fewer studies than this. The Cochrane

Database of Systematic Reviews is a database of systematic reviews, primarily of

randomized trials, for medical interventions in all areas of healthcare, and currently

includes over 3000 reviews. In this database, the median number of trials included

in a review is six. When a review includes only six studies, power to detect even a

moderately large effect, let alone a small one, can be well under 80%. While the

median number of studies in a review differs by the field of research, in almost any

field we do find some reviews based on a small number of studies, and so we cannot

simply assume that power is high.

Power for tests comparing subgroups, and for meta-regression

Even when power to test the main effect is high, many meta-analyses are not

concerned with the main effect at all, but are performed solely to assess the impact
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of covariates (or moderator variables). For example, we might know that an inter-

vention increases the survival time for patients with a specific form of cancer. The

question to be addressed is not whether the treatment works, but whether one variant

of the treatment is more effective than another variant.

The test of a moderator variable in a meta-analysis is akin to the test of an

interaction in a primary study, and both suffer from the same factors that tend to

decrease power. First, the effect size is actually the difference between the two effect

sizes and so is almost invariably smaller than the main effect size. Second, the

sample size within groups is (by definition) smaller than the total sample size.

Therefore, power for testing the moderator will often be very low (Hedges and

Pigott, 2004). The fact of low power for tests of the effects of covariates is

especially important because these kinds of analyses are often carried out in order

to demonstrate that the moderator variables don’t have an effect – i.e. to accept the

null hypothesis. The logic of accepting the null is based on the assumption of high

power, and that assumption is rarely tested.

Power for tests of homogeneity, or goodness of fit

Typically, an analysis that looks at the main effect is accompanied by a test of

homogeneity. Here, a nonsignificant p-value might be taken to mean that the

treatment effect is consistent across studies. Similarly, an analysis that looks at

covariates (by comparing subgroups or using meta-regression) is often followed by

a test for goodness of fit, and a nonsignificant p-value is taken to mean that the

covariates explain all the variance. In fact, though, these kinds of analyses routinely

suffer from low power. Power analysis could help researchers to recognize this fact,

and refrain from drawing (possibly incorrect) conclusions based on the fact that the

results are not statistically significant.

WHEN TO USE POWER ANALYSIS

In primary studies, power analysis is used primarily to determine an appropriate

sample size, since this is largely under the control of the investigators. For example,

researchers might modify the sample size by changing the planned enrollment period,

or the number of sites, or by changing the inclusion criteria for the study. In meta-

analysis the issues are rather different because the studies already exist, but there are

some parallels. We have some control over the number of studies, since the inclusion

criteria could be modified to include more or fewer studies. For example, if it looks as

if we will not be able to obtain enough studies to yield adequate power we might

consider widening the inclusion criteria, to include studies with a wider range of types

of participants. Conversely, if there appears to be an abundance of studies we may elect

to narrow the inclusion criteria. Altering the inclusion criteria changes the question

being addressed by the review, however, and in most situations it is more appropriate

to answer the original question than to adjust it because of power considerations.
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While most meta-analyses are planned after the primary studies have already

been performed, there are some initiatives underway to plan the meta-analyses

prospectively. For example, a consortium of hospitals may plan to perform a series

of studies with the goal of incorporating all of these studies into a meta-analysis. In

this case, the goal might be to ensure good power for the summary effect, rather than

for the individual studies. In this situation, the meta-analyst may have direct

influence over the sample sizes of the individual studies and the number of studies

(or hospitals). We have seen in this chapter that power considerations depend on the

intended meta-analysis model. In particular, for a fixed-effect meta-analysis only

the total sample size across studies is important, whereas for a random-effects meta-

analysis the option of using five hospitals with 1000 patients each (for a total of

5000 patients) versus ten hospitals with 500 patients each (for the same total) can

yield substantially different values for power.

A power analysis should be performed when the review is being planned, and not

after the review has been completed. Researchers sometimes conduct a power

analysis after the fact, and report that Power was low, and therefore the absence

of a significant effect is not informative. While this is correct, it is preferable to

address the same question by simply reporting the observed effect size with its

confidence interval. For example, The effect size is 0.4 with a confidence interval of

�0.10 to þ 0.90 is much more informative than the statement that Power was low.

The statement of effect size with confidence intervals not only makes it clear that

we cannot rule out a clinically important effect, but also gives a range for what this

effect might be (here, as low as �0.10 and as high as þ 0.90).

PLANNING FOR PRECISION RATHER THAN FOR POWER

A power analysis can focus directly on power (the likelihood of a test giving a

statistically significant result) or may focus on precision (the likelihood that a

confidence interval will be a specific width). The two approaches are closely

related, although the latter is more straightforward. As we shall see below, estimat-

ing precision is an early step on the way towards estimating power. We shall define

precision formally as one divided by the variance.

POWER ANALYSIS IN PRIMARY STUDIES

The formulas for power analysis are very similar for meta-analysis and for primary

studies. Before turning to meta-analysis we review some key issues in power

analysis for primary studies, to provide a context.

The statistical significance computed after the data are collected is a function of

three elements: the true effect size, the precision with which it is estimated (strongly

dependent on sample size) and the criterion used for statistical significance (alpha).

A study is more likely to be statistically significant if the effect size is large, the

precision is high or criterion for statistical significance is liberal (i.e. alpha is large).
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Power, which is simply a prediction about statistical significance, is determined by

the same three elements in the same way.

This parallel is obvious in the formulas for significance and for power. Consider a

significance test based on a test statistic, Z. The observed value is computed as

Z 5
Mffiffiffiffiffiffiffi
VM

p ; ð29:4Þ

where M is an estimate of effect size from the data and VM its variance. This Z

value is evaluated with reference to the standard normal distribution, with a two-

tailed p-value of

p 5 2½1� Fð Zj jÞ�: ð29:5Þ

In power analysis we consider the distribution of Z, not under the null hypothesis,

but under specific alternatives. We will use a parameter lambda (l) to represent an

alternative true value of Z, defined as

l5
dffiffiffiffiffi
Vd
p ; ð29:6Þ

where d is the true effect size, and Vd its variance.

Note: we are using Vd for both the true variance in (the Z equation) and l in (the

lambda equation). Strictly, these are different and might be notated differently.

However, in meta-analysis we do not usually distinguish between the two (we

assume the estimated variances are known) so we will not in this chapter.

The power of a study is the probability of observing values of Z that are

statistically significant when the true mean of Z is l. For a two-tailed test,

Power 5 1� Fðc� � lÞÞ þ Fð�c� � lÞ;ð ð29:7Þ

where c� is the critical value of Z associated with significance level � (thus, for

�5 0.05, c�5 1.96).

The actual computation of power for a given effect size (d), precision (1/Vd), and

� is usually straightforward. In power analysis the challenge is to identify a

plausible range of values for each of these factors in order to determine values for

the power of the study in realistic circumstances. The same formulas are used for

sample size calculations, in which the power, effect size and � are fixed, and the

required value of Vd is computed. From Vd, a sample size to meet these criteria can

be computed. In the following discussion we focus mainly on the investigation of

power rather than the computation of sample size.

Finding a range of values for the effect size

The effect size used to compute power is defined as the true (population) effect size.

However, since we don’t actually know the population effect size we must select a

number to serve that function. In a sample size calculation, we use the smallest
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effect size that it would be important to detect, and this depends entirely on the

context of the study. For example, if we are looking at a treatment to reduce risk of

death we might decide that even a small effect is important. By contrast, if we are

looking at treatment to reduce the risk of flu, we might decide that only a relatively

large effect is worth detecting.

In power analysis, we must pick plausible values for the effect size, and usually a

range of values is investigated. This range should be based on substantive or clinical

importance, and where possible should be informed by available data. For example,

if we are working with a class of drugs that typically yields a 10–15% reduction in

events, then we should probably use an effect size that falls in (or near) this range.

Prior studies or a pilot study can help to identify a plausible range, and researchers

may also fall back on the use of conventions, such as Cohen’s proposals for small,

medium and large effects in social science research (Cohen, 1987).

Finding a range of values for the precision

The major determinant of precision is sample size. The range of possible sample

sizes will be determined by practical constraints, which will vary substantially from

one study to the next. For a primary experimental study, a pilot study may provide

information about the potential sample size by showing how many people can be

enrolled over a given period of time.

Other determinants of precision depend on the type of data being collected. For

example, for continuous outcomes, precision depends on the inherent variability

across individuals, expressed using the standard deviation.

Finding a range of values for significance level (a)

In any significance test we need to balance the risk of a type I error (the true effect is

zero but we reject the null) and a type II error (the true effect is not zero but we fail to

reject the null). As we move the criterion for significance (alpha) toward zero we

reduce the risk of a type I error but increase risk of a type II error.

There is a common convention that alpha should be set at 0.05 (or 5%) and power

at 80%, which makes sense if the damage associated with a type I error is four times as

severe as that associated with a type II error (with power at 80%, the risk of a type II

error is 20%, which is four times the risk of a type I error). In fact, though, it would

be better to adjust these risks as appropriate for a given study. For example, if a

positive result will be seen as definitive and result in an immediate change in

clinical practice, we would want to protect against a type I error and would therefore

use a conservative value of alpha (say, 0.01). On the other hand, if a significant

result will lead to other trials to replicate the effect, while a nonsignificant result

will discourage further research of the treatment, we might be more concerned with

a type II error. In this case we might use a more liberal value of alpha (say 0.10) as a

mechanism to increase power.
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Illustrative example

Suppose that we plan to investigate the impact of a drug to reduce pain from

migraine headaches. Patients will be allocated at random to either treatment or

placebo, and assessed after two hours on a 100-point scale. The standard deviation

of scores on this scale is 10. We plan to perform this study in a hospital’s migraine

clinic, where we can enroll about 10 patients a month, and we wish to use a

significance level of �5 0.05. Suppose it is proposed that the study runs for five

months. During this period we can recruit 25 patients per group. Patients report that

a difference of 2 to 4 points on this scale (corresponding to a standardized mean

difference of 0.2 or 0.4) would represent a meaningful effect to them, and this effect

is consistent with data from previous studies.

The effect size index is d with two independent groups, and so we compute the

variance using (4.20),

Vd 5
n1 þ n2

n1 � n2

þ d2

2ðn1 þ n2Þ
: ð29:8Þ

For our sample size of 25 and effect size of 0.3, we can estimate this variance as

Vd 5
25þ 25

25� 25
þ 0:302

2ð25þ 25Þ 5 0:0809 :

The parameter l is given by

l5
0:30ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0809
p 5 1:0547 :

The Z-value required for significance with alpha (2-tailed) of 0.05 is

c� 5Fð1� 0:05=2Þ5 1:96:

In Excel 5NORMSINV(1� 0.05/2) 5 returns 1.96, and finally,

Power 5 1� Fð1:96� 1:0547Þ þ Fð�1:96� 1:0547Þ5 0:1840:

In Excel, 51-NORMSDIST(1.96�1.0547)þNORMSDIST(�1.96�1.0547) 5 0.1840.

In words, the power to detect an effect size of 0.30 is 0.184, or 18.4%. This is

obviously much lower than the values of 80% or 90% that are typically desirable in

a randomized trial. By applying the same formula while varying the effect size

(0.20, 0.30, 0.40) and sample size (from 10 to 300 per group) we can create a graph

that displays the power of the study under different scenarios.

Figure 29.1 shows power as a function of sample size for d5 0.40, 0.30, and 0.20,

assuming alpha, two-tailed, is set at 0.05. Reading left to right at 0.90 on the Y axis,

to yield power of 90% for a large, medium or small effect we would need a sample

size of around 140, 240, or more than 300 per group. We might then decide to enroll

240 patients per group, which will allow us to complete the study in 48 months.

Reading from top to bottom at 240 on the X axis, the study will have power of about
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99% to detect the larger effect of 0.40, 90% to detect the moderate effect of 0.30,

and 60% to detect the smaller effect of 0.20.

With this as prologue we can turn to meta-analysis and consider how the process

is analogous to that for the primary study, and how it differs.

POWER ANALYSIS FOR META-ANALYSIS

Power analysis for a main effect

The logic of power analysis for meta-analysis is very similar to the logic of power

analysis for primary studies. Again, we could either investigate how power is likely

to depend on plausible values of the effect size, precision and alpha, or we could

compute a precision for a given effect size, alpha and power. In meta-analysis, the

precision reflects both the sample sizes of the studies and the number of studies.

When using power analysis to compute the precision, we therefore need to consider

both aspects of sample size. There are differences in the implications of precision of

sample sizes, depending on whether we adopt a fixed-effect or random-effects

model for the meta-analysis.

For power analysis, plausible values for the effect size and precision are needed.

Alpha should be chosen to reflect the potential impact of a type I error. The effect

sizes should be based on substantive issues (‘What effect size would it be important

to detect?’). Both the effect size and the precision could be informed by a pilot

study. In a primary study this might mean actually performing the study on a small

scale to get a sense of the likely effect size as well as the number of persons who

might be recruited. In the meta-analysis this might mean locating and coding a

subset of the literature to get a sense of the effect sizes, of the sample sizes within

studies, and also of the number of studies that meet the inclusion criteria.

In this chapter, we assume that every study has the same precision (in the notation

of Part 3, VYi
is the same in every study). For a discussion of power analysis when

the VYi
are not equal, see Hedges and Pigott (2001).
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Figure 29.1 Power for a primary study as a function of n and d.
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Power for main effect using fixed-effect model

The formulas for significance and for power have the same structure as they did for

primary studies. Concretely, the test of significance for the main effect in a fixed-

effect meta-analysis is based on a test statistic Z, computed as

Z 5
Mffiffiffiffiffiffiffi
VM

p ; ð29:9Þ

but M and VM are now the effect size and variance of the summary effect observed in

the synthesis rather than for a single study. Recall that VM is calculated as one

divided by the sum of the weights awarded to the individual studies, where the

weights are inverse-variances. If all studies had the same variance, say VY, then VM

is equivalent to VY /k, where k is the number of studies.

As before, Z is evaluated with reference to the standard normal distribution which

yields the corresponding p-value. For a two-tailed test,

p 5 2½1� ðFð Zj jÞ� : ð29:10Þ

Similarly, power analysis is again based on lambda (l), defined as

l5
dffiffiffiffiffi
Vd
p ; ð29:11Þ

but now d and Vd are the (hypothesized) true effect size and its variance for the

summary effect. As before, the power formula for a two-tailed test is

Power 5 1� Fðc� � lÞ þ Fð�c� � lÞ : ð29:12Þ

Illustrative example

Above, we presented the power analysis for a primary study to assess the impact of a

treatment for migraine headaches. For a single study with n 5 25 per group,

assuming an effect size of 0.30, we computed the variance as 0.0809, lambda as

1.0547, and power as 0.18.

Suppose that we are planning a meta-analysis to address the same question and

instead of a single study with n 5 25 per group, we have ten studies where each has

this sample size. Since the variance of a single study is

25þ 25

25� 25
þ 0:302

2ð25þ 25Þ 5 0:0809 ;

the variance of the summary effect is

VM 5
0:0809

10
5 0:00809 :
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Then, lambda is

l5
0:30ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:00809
p 5 3:3354;

C� 5Fð1� 0:05=2Þ5 1:96;

and

Power 5 1�Fð1:96� 3:3354Þþ F �1:96� 3:3354Þ5 0:9155:ð

In Excel, 5NORMSINV(1� 0.05/2) returns 1.96, and

5 1-NORMSDIST(1.96� 3.3354)þNORMSDIST(� 1.96� 3.3354) returns 0.9155.

In other words, while the formula for power is identical to the formula for a primary

study, the variance is reduced by a factor of k (the number of studies), which yields a

k-fold increase in lambda and an increase in power.

We can apply the formula while varying the effect size and the number of studies

to graph power as a function of effect size and number of studies. In Figure 29.2 we

assume an n of 25 per group within each study, alpha (2-tailed) of 0.05 and a fixed-

effect model. The graph shows power for an effect size (d) of 0.4, 0.3, 0.2, and the

number of studies varies from 1 to 25.

Reading from left to right, to ensure power of 90% for an effect size of 0.40, 0.30 or

0.20 we would need 6 studies, 10 studies, or 22 studies. Suppose that it becomes clear

from a pilot study that there are likely to be at least 20 studies that meet the inclusion

criteria. At that point, the researchers might decide to proceed as planned. Based on

this number, and reading the graph from top to bottom, if the true effect is 0.40 or 0.30

power will exceed 99%, and if the true effect is 0.20, power will approach 90%.

By contrast, if it seemed that there would be only 5 or 10 studies that met the

inclusion criteria the reviewers might wish to obtain a more accurate estimate of the

number (the difference between 5 and 10 is important). Alternatively, there may be
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Figure 29.2 Power for a meta-analysis as a function of number studies and d.
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reasonable ways of modifying the research question to increase the number of

relevant studies.

Power for main effect using random-effects model

The formulas for significance and for power under the random-effects model have

the same structure as those for a fixed effect meta-analysis. Using the notation

introduced in Chapter 12 where an asterisk (*) indicates that a statistic is based on

random-effects variance, the test of significance for the main effect is still based on

a test statistic (for example) Z*, computed as

Z�5
M�ffiffiffiffiffiffiffiffi
VM�
p ; ð29:13Þ

but M* and VM* are now the estimated mean effect size and its variance using

random-effects weights. As before, Z* is evaluated with reference to the standard

normal distribution which yields the corresponding p-value. For a two-tailed test,

p�5 2½1� ðFð Z�
�� ��ÞÞ� : ð29:14Þ

Similarly, power analysis is still based on lambda (l*), defined as

l�5
d�ffiffiffiffiffiffiffi
Vd�
p ; ð29:15Þ

but now d* and Vd* are the true mean effect size and its variance for the summary

effect. The variance incorporates variance within studies and variance between

studies. Consider the simple situation in which each study has the same within-

study variance, say VY. Then the variance may be written as

V�d 5
VY þ t2

k
; ð29:16Þ

Plausible values of the within-study variance, VY, might be obtained using the same

procedures as those used for the fixed-effect model. Plausible values of the

between-studies variance, t2, might be obtained using data from the pilot study,

by computing the effect sizes for the studies gathered as part of the pilot and looking

at how much these effects actually vary from study to study. Alternatively, the

between-studies variance in a previous, similar, meta-analysis might be suitable.

Finally, Hedges and Pigott propose a convention that can be used to represent

small, medium, and large degrees of heterogeneity. This convention is to set t2

equal to 0.33, 0.67, or 1.0 times the within-study variance, so that the total variance

Vd* 5 1.33VY/k, 1.67VY/k, or 2.00VY/k

As before, the critical value of alpha is given by

C� 5Fð1� �=2Þ ; ð29:17Þ

270 Other Issues



and power for a two-tailed test is then given by

Power 5 1� FðC� � l�Þ þ Fð�C� � l�Þ: ð29:18Þ

In practice, the effect size is likely to be the same under the random-effects

model as it had been under the fixed–effect model. However, the variance will

always be larger under the random-effects model as compared with the fixed-

effect model (see Chapter 13).

Illustrative example

The example above for the fixed-effect model can be used here as well if we assume

that the true effect size varies from study to study, and the random-effects model is

therefore appropriate. Again, we assume an effect size of d 5 0.30 and 10 studies

with 25 patients per group. The within-study variance for one study is computed as

VY 5
25þ 25

25� 25
þ 0:302

2ð25þ 25Þ 5 0:0809:

If we assume a moderate degree of between-study heterogeneity and apply the

convention, the variance of the summary effect is computed as

V�d 5
1:667� 0:0809

10
5 0:0135:

The parameter l* is computed as

l�5
0:30ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0135
p 5 2:5836:

The critical value of alpha is given by

C� 5Fð1� 0:05=2Þ5 1:96 :

In Excel, 5NORMSINV(1�0.05/2) returns 1.96.

Power is then given by

Power 5 1� Fð1:96� 2:5836Þ þ Fð�1:96� 2:5836Þ5 0:7336:

This computation can be done in EXCEL as

51-NORMSDIST(1.96�2.5836)þNORMSDIST(�1.96�2.5836).

As before, we can create a graph that shows power under a series of assumptions.

Figure 29.3 is based on the middle effect size of d5 0.30, and shows how power

will vary if the dispersion is small, medium, or large. We could create a similar

graph for an effect size (d) of 0.20 or of 0.40.

Reading from left to right, if the between-studies dispersion is small, moderate, or

large, then we would need about 12, 15, or 20 studies to get power of 90%. Assume

that the pilot study shows that we can locate at least 15 studies. Reading from top to

bottom at 15 on the X-axis, we see that if dispersion is small, medium or large,
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power would be around 0.95, 0.92 or 0.90. Of course, power will be lower for an

effect size of 0.20 and higher for an effect size of 0.40.

Notes about random effects

Under the random-effects model the variance of each study (and of the summary

effect) includes two components, the variance within studies and the variance

between studies. The practical impact is that power will depend both on the total

sample size and also the number of studies. If there is substantial study-to-study

dispersion, then the only way to yield good power is to include a large number of

studies (which reduces this element of the variance). If the number of studies is

small, then power could remain low even if the total sample size across studies

reaches into the tens of thousands or even higher.

It is important to understand that the fixed-effect model and random-effects

model address different hypotheses, and that they use different estimates of the

variance because they make different assumptions about the nature of the distribu-

tion of effects across studies, as explained in Chapter 13. Researchers sometimes

remark that power is lower under the random-effects model than for the fixed-effect

model. While this statement may be true, it misses the larger point: it is not

meaningful to compare power for fixed- and random-effects analyses since the

two values of power are not addressing the same question.

POWER ANALYSIS FOR A TEST OF HOMOGENEITY

Many meta-analyses include a test of homogeneity, which asks whether or not the

between-studies dispersion is more than would be expected by chance. The test of

significance is discussed in Chapter 16, and is based on Q, the sum of the squared

deviations of each study’s effect size estimate (Yi) from the summary effect (M),

with each deviation weighted by the inverse of that study’s variance. Concretely,

Power

Number of studies

Power for a Meta-Analysis
as a Function of Number of Studies and Heterogeneity
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Figure 29.3 Power for a meta-analysis as a function of number studies and heterogeneity.
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Q 5
Xk

i 5 1

WiðYi � M Þ2 : ð29:19Þ

Q is then evaluated with reference to the chi-squared distribution with k�1 degrees

of freedom. Power for this test depends on three factors. The larger the ratio of

between-studies to within-studies variance, the larger the number of studies, and the

more liberal the criterion for significance, the higher the power. We can compute

power under two alternative scenarios. In the first scenario we do not assume any

meta-analytic model (such as fixed-effect or random-effects) for the true effects in

the different studies. In the second scenario we assume a random-effects model for

these true effects. In both scenarios we assume that the within-study variance VYi
is

the same in each study. For a discussion of power analysis when the VYi
are not

equal, see Hedges and Pigott (2001).

Power for a test of homogeneity in the absence of a meta-analytic model

Researchers who apply the fixed-effect model sometimes test the dispersion for

significance. Technically, if the fixed-effect model of homogeneity is true, there is

no dispersion, since the model asserts that the between-studies variance is zero.

However, it is possible to perform this test (and to compute power) in the absence of

a meta-analytic model (a model in which the effect sizes are taken to be fixed, but

not necessarily equal).

The expected value of the test statistic (Q), is equal to dfþ l, where the non-

centrality parameter l is computed as

l5 df � t2

VY

� �
: ð29:20Þ

In this formula df is k�1 (k being the number of studies). Here t2 and VY are the

between-studies variance and the within-studies variance respectively, but power

depends only the ratio of these two values (rather than their absolute values).

Power is then given by

Power 5 1� FðC� k � 1; lÞ;j ð29:21Þ

where

FðX df ; lÞj

is the cumulative distribution function of a noncentral chi-square with df degrees of

freedom and noncentrality parameter l, and where C� is the 100(1��) percent point

of the central chi-squared distribution.

To approximate this value in Excel we can proceed as follows. First, the function

5CHIINV(alpha,df) returns the alpha critical value C�. Then,
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a 5 1þ l
df þ l

; ð29:22Þ

b 5 df þ l2

df þ 2l
; and ð29:23Þ

X 5
C�

a
: ð29:24Þ

Finally, the expression 51-GAMMADIST(X,b/2,2,TRUE) returns the value of

power.

Illustrative example
Suppose that we are planning a meta-analysis with six studies, and we want to

compute power to test for a large amount of dispersion (in which t2 5 VY) with

alpha set at 0.05. Then,

l5 5
1

1

� �
5 5 :

(Note that we don’t need to know the actual variances, only the ratio of t2 to VY.

Using the conventions, this ratio is 1.000., 0.667, or 0.333 for large, moderate, and

small dispersion.)

In Excel, the chi-squared critical value corresponding to� of 0.05 for 5 df is given

by the function 5CHIINV(0.05,5), which returns 11.0705. The intermediate values

a and b are computed as

a 5 1þ 5

5þ 5
5 1:5 and

b 5 5þ 52

5þ 2� 5
5 6:6667 :

Finally, power is given by the Excel function 51-GAMMADIST(11.0705/1.5,

6.6667/2, 2, TRUE), which returns 0.3553.

Note that we assumed a large amount of dispersion, and the number of studies is

typical for many meta-analyses, yet power is quite low. In this example we would

need 26 studies to boost power into the 80% range.

Power for a test of homogeneity under the random-effects model

Power of the test is slightly different if we impose a random-effects model on

the effects across the studies. The formulas are the same as those for the test

in the absence of a meta-analytic model except for the final step. Now, we use

instead an Excel expression of the form 5CHIDIST(x, df) to return power,

where
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X 5
C�

1þ t2

VY

: ð29:25Þ

In this example, 5 CHIDIST 11:0705= 1þ 1=1ð Þ; 5ð Þ returns 0.3541, or 35.4%.

In this chapter we have presented the logic of power analysis for systematic

reviews, and presented formulas for tests of the main effect and for tests of

homogeneity. Hedges and Pigott (2004) discuss power for tests of subgroup ana-

lyses, and for meta-regression.

SUMMARY POINTS

� The process of power analysis for a meta-analysis closely parallels the issues

of power analysis for a primary study.

� Under the fixed-effect model, the ‘sample size’ factor is driven by the number

of subjects accumulated across studies. Power for a meta-analysis of ten

studies with 100 persons each is the same as power for one study with 1000

persons (provided the effect size is constant). Therefore, a fixed-effect ana-

lyses with a decent number of studies and/or some large studies, will often

have good power to detect any nontrivial effect size.

� Under the random-effects model power depends not only on the total number

of subjects but also on the number of studies. Even if the effect size is large

and the cumulative number of subjects is large, if there are only a few studies

and the variance between-studies is substantial, power could be very low.

� The absence of statistical significance should never be interpreted as evidence

that an effect is absent. This is important to keep in mind since power to detect

heterogeneity in effect sizes, and power to detect the relationship between

subgroup membership and effect size, or between covariate values and effect

size, is often quite low.
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INTRODUCTION

While a meta-analysis will yield a mathematically accurate synthesis of the studies

included in the analysis, if these studies are a biased sample of all relevant studies, then

the mean effect computed by the meta-analysis will reflect this bias. Several lines of

evidence show that studies that report relatively high effect sizes are more likely to be

published than studies that report lower effect sizes. Since published studies are more

likely to find their way into a meta-analysis, any bias in the literature is likely to be

reflected in the meta-analysis as well. This issue is generally known as publication bias.

The problem of publication bias is not unique to systematic reviews. It affects the

researcher who writes a narrative review and even the clinician who is searching a

database for primary papers. Nevertheless, it has received more attention with

regard to systematic reviews and meta-analyses, possibly because these are pro-

moted as being more accurate than other approaches to synthesizing research.

In this chapter we first discuss the reasons for publication bias and the evidence

that it exists. Then we discuss a series of methods that have been developed to assess

Introduction to Meta-Analysis.  Michael Borenstein, L. V. Hedges, J. P. T. Higgins and H. R. Rothstein  
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the likely impact of bias in any given meta-analysis. At the end of the chapter we

present an illustrative example.

THE PROBLEM OF MISSING STUDIES

When planning a systematic review we develop a set of inclusion criteria that

govern the types of studies that we want to include. Ideally, we would be able to

locate all studies that meet our criteria, but in the real world this is rarely possible.

Even with the advent of (and perhaps partly due to an over-reliance on) electronic

searching, it is likely that some studies which meet our criteria will escape our

search and not be included in the analysis.

If the missing studies are a random subset of all relevant studies, the failure to

include these studies will result in less information, wider confidence intervals, and

less powerful tests, but will have no systematic impact on the effect size. However,

if the missing studies are systematically different than the ones we were able to

locate, then our sample will be biased. The specific concern is that studies that

report relatively large effects for a given question are more likely to be published

than studies that report smaller effects for the same question. This leads to a bias in

the published literature, which then carries over to a meta-analysis that draws on this

literature.

Studies with significant results are more likely to be published

Several lines of research (reviewed by Dickersin, 2005) have established that studies

with statistically significant results are more likely to find their way into the published

literature than studies that report results that are not statistically significant. And, for any

given sample size the result is more likely to be statistically significant if the effect size

is larger. It follows that if there is a population of studies that looked at the magnitude of

a relationship, and the observed effects are distributed over a range of values (as they

always are), the studies with effects toward the higher end of that range are more likely

to be statistically significant and therefore to be published. This tendency has the

potential to produce very large biases in the magnitude of the relationships, particularly

if studies have relatively small sample sizes (see, Hedges, 1984; 1989).

A particularly enlightening line of research was to identify groups of studies

as they were initiated, and then follow them prospectively over a period of

years to see which were published and which were not. This approach was

taken by Easterbrook, Berlin, Gopalan, & Matthews (1991), Dickersin, Min, &

Meinert (1992), Dickersin & Min (1993a), among others. Nonsignificant

studies were less likely to be published than significant studies (61–86% as

likely), and when published were subject to longer delay prior to publication.

Similar studies have demonstrated that researchers selectively report their

findings in the reports they do publish, sometimes even changing what is

labeled a priori as the main hypothesis (Chan et al., 2004).
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Published studies are more likely to be included in a meta-analysis

If persons performing a systematic review were able to locate studies that had been

published in the grey literature (any literature produced in electronic or print format

that is not controlled by commercial publishers, such as technical reports and

similar sources), then the fact that the studies with higher effects are more likely

to be published in the more mainstream publications would not be a problem for

meta-analysis. In fact, though, this is not usually the case.

While a systematic review should include a thorough search for all relevant

studies, the actual amount of grey/unpublished literature included, and the types,

varies considerably across meta-analyses. When Rothstein (2006) reviewed the 95

meta-analytic reviews published in Psychological Bulletin between 1995 and 2005 to

see whether they included unpublished or grey research, she found that 23 of the 95

clearly did not include any unpublished data. Clarke and Clarke (2000) studied the

references from healthcare protocols and reviews published in The Cochrane Library

in 1999, and found that about 92% of references to studies included in reviews were

to journal articles. Of the remaining 8%, about 4% were to conference proceedings,

about 2% were to unpublished material (for example personal communication, in

press documents and data on file), and slightly over 1% were to books or book

chapters. In a similar vein, Mallet, Hopewell, & Clarke (2002) looked at the sources

of grey literature included in the first 1000 Cochrane systematic reviews, and found

that nearly half of them did not include any data from grey or unpublished sources.

Since the meta-analyses published in the Cochrane Database have been shown to

retrieve a higher proportion of studies than those published in many journals, these

estimates probably understate the extent of the problem.

Some have suggested that it is legitimate to exclude studies that have not been

published in peer-reviewed journals because these studies tend to be of lower quality.

For example, in their systematic review, Weisz et al. (1995) wrote ‘We included only

published psychotherapy outcome studies, relying on the journal review process as

one step of quality control’ (p. 452). However, it is not obvious that journal review

assures high quality, nor that it is the only mechanism that can do so. For one thing,

not all researchers aim to publish their research in academic journals. For example,

researchers working for government agencies, independent think-tanks or consulting

firms generally focus on producing reports, not journal articles. Similarly, a thesis or

dissertation may be of high quality, but is unlikely to be submitted for publication in

an academic journal if the individual who produced it is not pursuing an academic

career. And of course, peer review may be biased, unreliable, or of uneven quality.

Overall, then, publication status cannot be used as a proxy for quality; and in our

opinion should not be used as a basis for inclusion or exclusion of studies.

Other sources of bias

Other factors that can lead to an upward bias in effect size and are included under the

umbrella of publication bias are the following. Language bias (English-language
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databases and journals are more likely to be searched, which leads to an over-

sampling of statistically significant studies) (Egger et al., 1997; Jüni et al., 2002);

availability bias (selective inclusion of studies that are easily accessible to the

researcher); cost bias (selective inclusion of studies that are available free or at low

cost); familiarity bias (selective inclusion of studies only from one’s own discipline);

duplication bias (studies with statistically significant results are more likely to be

published more than once (Tramer et al., 1997)) and citation bias (whereby studies

with statistically significant results are more likely to be cited by others and therefore

easier to identify (Gøtzsche, 1997; Ravnskov, 1992)).

METHODS FOR ADDRESSING BIAS

In sum, it is possible that the studies in a meta-analysis may overestimate the true

effect size because they are based on a biased sample of the target population of

studies. But how do we deal with this concern? The only true test for publication

bias is to compare effects in the published studies formally with effects in the

unpublished studies. This requires access to the unpublished studies, and if we had

that we would no longer be concerned. Nevertheless, the best approach would be for

the reviewer to perform a truly comprehensive search of the literature, in hopes of

minimizing the bias. In fact, there is evidence that this approach is somewhat

effective. Cochrane reviews tend to include more studies and to report a smaller

effect size than similar reviews published in medical journals. Serious efforts to find

unpublished, and difficult to find studies, typical of Cochrane reviews, may there-

fore reduce some of the effects of publication bias.

Despite the increased resources that are needed to locate and retrieve data from

sources such as dissertations, theses, conference papers, government and techni-

cal reports and the like, it is generally indefensible to conduct a synthesis that

categorically excludes these types of research reports. Potential benefits and costs

of grey literature searches must be balanced against each other. Readers who

would like more guidance in the process of literature searching and information

retrieval may wish to consult Hopewell, Mallett and Clarke (2005), Reed and

Baxter (2009), Rothstein and Hopewell (2009), or Wade, Turner, Rothstein and

Lavenberg (2006).

Since we cannot be certain that we have avoided bias, researchers have developed

methods intended to assess its potential impact on any given meta-analysis. These

methods address the following questions:

� Is there evidence of any bias?

� Is it possible that the entire effect is an artifact of bias?

� How much of an impact might the bias have?

We shall illustrate these methods as they apply to a meta-analysis on passive

smoking and lung cancer.
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ILLUSTRATIVE EXAMPLE

Hackshaw et al. (1997) published a meta-analysis with data from 37 studies that

reported on the relationship between so-called second-hand (passive) smoking and

lung cancer. The paper reported that exposure to second-hand smoke increased the

risk of lung cancer in the nonsmoking spouse by about 20%. Questions were raised

about the possibility that studies with larger effects were more likely to have been

published (and included in the analysis) than those with smaller (or nil) effects, and

that the conclusion was therefore suspect.

THE MODEL

In order to gauge the impact of publication bias we need a model that tells us which

studies are likely to be missing. The model that is generally used (and the one we

follow here) makes the following assumptions: (a) Large studies are likely to be

published regardless of statistical significance because these involve large commit-

ments of time and resources. (b) Moderately sized studies are at risk for being lost,

but with a moderate sample size even modest effects will be significant, and so only

some studies are lost here. (c) Small studies are at greatest risk for being lost.

Because of the small sample size, only the largest effects are likely to be significant,

with the small and moderate effects likely to be unpublished.

The combined result of these three items is that we expect the bias to increase as

the sample size goes down, and the methods described below are all based on this

model. Other, more sophisticated methods have been developed for estimating the

number of missing studies and/or adjusting the observed effect to account for bias.

These have rarely been used in actual research because they are difficult to imple-

ment and also because they require the user to make some relatively sophisticated

assumptions and choices.

Before proceeding with the example we call the reader’s attention to an important

caveat. The procedures that we describe here look for a relationship between sample

size and effect size, and if such a relationship is found, it is attributed to the

existence of missing studies. While this is one possible reason that the effect size

is larger in the smaller studies, it is also possible that the effect size really is larger in

the smaller studies. We mention this caveat here to provide a context for the

discussion that follows, and return to it near the end of the chapter, in the section

entitled small-study effects.

GETTING A SENSE OF THE DATA

A good place to start in assessing the potential for bias is to get a sense of the data,

and the forest plot can be used for this purpose. Figure 30.1 is a forest plot of the

studies in the passive smoking meta-analysis. In this example, an increase in risk is

indicated by a risk ratio greater than 1.0. The overwhelming majority of studies

show an increased risk for second-hand smoke, and the last row in the spreadsheet
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shows the summary data for the fixed-effect model. The risk ratio is 1.204 and the

95% confidence interval is 1.120 to 1.295.

The studies have been plotted from most precise to least precise, so that larger

studies appear toward the top and smaller studies appear toward the bottom. This

has no impact on the summary effect, but it allows us to see the relationship between

sample size and effect size. As we move toward the bottom of the plot the effects

shift toward the right, which is what the model would predict if bias is present.

If the analysis includes some studies from peer-reviewed journals and others from

the grey literature, we can also group by source and see if the grey papers (which may

be representative of any missing studies) tend to have smaller effects than the others.

The funnel plot

Another mechanism for displaying the relationship between study size and effect

size is the funnel plot.

Figure 30.1 Passive smoking and lung cancer – forest plot.

282 Other Issues



Traditionally, the funnel plot wasplotted with effect size on the X axisand the sample

size or variance on the Y axis. Large studies appear toward the top of the graph and

generally cluster around the meaneffect size. Smaller studies appear toward the bottom

of the graph, and (since smaller studies have more sampling error variation in effect

sizes) tend to be spread across a broad range of values. This pattern resembles a funnel,

hence the plot’s name (Light and Pillemer, 1984; Light et al., 1994).

The use of the standard error (rather than sample size or variance) on the Y axis

has the advantage of spreading out the points on the bottom half of the scale, where

the smaller studies are plotted. This could make it easier to identify asymmetry.

This affects the display only, and has no impact on the statistics, and this is the route

we follow here (Figure 30.2).

IS THERE EVIDENCE OF ANY BIAS?

In the absence of publication bias, the studies will be distributed symmetrically

about the mean effect size, since the sampling error is random. In the presence of

publication bias the studies are expected to follow the model, with symmetry at the

top, a few studies missing in the middle, and more studies missing near the bottom.

If the direction of the effect is toward the right (as in our example), then near the

bottom of the plot we expect a gap on the left, where the nonsignificant studies

would have been if we had been able to locate them.

In the running example (Figure 30.2) the risk ratio (in log units) is at the bottom

and the standard error is on the Y axis (which has been reversed, so low values are at
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Figure 30.2 Passive smoking and lung cancer – funnel plot.

Chapter 30: Publication Bias 283



the top). The subjective impression does support the presence of asymmetry.

Toward the bottom of the graph most studies appear toward the right (indicating

more risk), which is consistent with the possibility that some studies are missing

from the left.

First, we ask if there is evidence of any bias. Because the interpretation of a funnel

plot is largely subjective, several tests have been proposed to quantify or test the

relationship between sample size and effect size. Two early proposals are in

common use (Begg and Mazumdar, 1994, Egger et al., 1997); a comprehensive

review appears in Chapter 10 of Higgins and Green (2008).

While these tests provide useful information, several caveats are in order.

First, the tests (like the funnel plot) may yield a very different picture

depending on the index used in the analysis (risk difference versus risk

ratio, for example). Second, this approach makes sense only if there is a

reasonable amount of dispersion in the sample sizes and a reasonable number

of studies. Third, even when these criteria are met, the tests tend to have

lower power. Therefore, the absence of a significant correlation or regression

cannot be taken as evidence of symmetry.

In any event, even if we could somehow solve these problems, the question

addressed by the tests (is there evidence of any bias) is of limited import. A more

interesting question would be How much bias is there, and what is its impact on our

conclusions?

IS THE ENTIRE EFFECT AN ARTIFACT OF BIAS?

The next question one might ask is whether or not the observed overall effect is

robust. In other words, can we be confident that the effect is not solely an artifact of

bias?

Rosenthal’s Fail-safe N

An early approach to dealing with publication bias was Rosenthal’s Fail-safe N.

Suppose a meta-analysis reports a significant p-value based on k studies. We are

concerned that studies with smaller effects are missing, and if we were to retrieve all

the missing studies and include them in the analysis, the p-value for the summary

effect would no longer be significant. Rosenthal (1979) suggested that we actually

compute how many missing studies we would need to retrieve and incorporate in the

analysis before the p-value became nonsignificant. For purposes of this exercise we

would assume that the mean effect in the missing studies was zero. If it should

emerge that we needed only a few studies (say, five or ten) to ‘nullify’ the effect,

then we would be concerned that the true effect was indeed zero. However, if it

turned out that we needed a large number of studies (say, 20,000) to nullify the

effect, there would be less reason for concern.
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Rosenthal referred to this as a File drawer analysis (file drawers being the

presumed location of the missing studies), and Harris Cooper suggested that the

number of missing studies needed to nullify the effect should be called the

Fail-safe N (Rosenthal, 1979; Begg and Mazumdar, 1994).

While Rosenthal’s work was critical in focusing attention on publication

bias, this approach is of limited utility for a number of reasons. First, it focuses

on the question of statistical significance rather than substantive significance.

That is, it asks how many hidden studies are required to make the effect not

statistically significant, rather than how many hidden studies are required

to reduce the effect to the point that it is not of substantive importance.

Second, the formula assumes that the mean effect size in the hidden studies is

zero, when in fact it could be negative (which would require fewer studies to

nullify the effect) or positive but low. Finally, the Fail-safe N is based on

significance tests that combine p-values across studies, as was common at the

time that Rosenthal suggested the method. Today, the common practice is to

compute a summary effect, and then compute the p-value for this effect. The

p-values computed using the different approaches actually test different null

hypotheses, and are not the same. For these reasons this approach is not generally

appropriate for analyses that focus on effect sizes. We have addressed it at

relative length only because the method is well known and because of its

important historical role.

That said, for the passive smoking review the Fail-safe N is 398, suggesting

that there would need to be nearly 400 studies with a mean risk ratio of 1.0 added to

the analysis, before the cumulative effect would become statistically nonsignificant.

Orwin’s Fail-safe N

As noted, two problems with Rosenthal’s approach are that it focuses on statistical

significance rather than substantive significance, and that it assumes that the mean

effect size in the missing studies is zero. Orwin (1983) proposed a variant on the

Rosenthal formula that addresses both of these issues. First, Orwin’s method allows

the researcher to determine how many missing studies would bring the overall effect

to a specified level other than zero. The researcher could therefore select a value that

would represent the smallest effect deemed to be of substantive importance, and ask

how many missing studies it would take to bring the summary effect below this

point. Second, it allows the researcher to specify the mean effect in the missing

studies as some value other than zero. This would allow the researcher to model a

series of other distributions for the missing studies (Becker, 2005; Begg and

Mazumdar, 1994).

In the running example, Orwin’s Fail-safe N is 103, suggesting that there would

need to be over 100 studies with a mean risk ratio of 1.0 added to the analysis before

the cumulative effect would become trivial (defined as a risk ratio of 1.05).
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HOW MUCH OF AN IMPACT MIGHT THE BIAS HAVE?

The approaches outlined above ask whether bias has had any impact on the observed

effect (those based on the funnel plot), or whether it might be entirely responsible

for the observed effect (Fail-safe N). As compared with these extreme positions, a

third approach attempts to estimate how much impact the bias had, and to estimate

what the effect size would have been in the absence of bias. The hope is to classify

each meta-analysis into one of three broad groups, as follows.

� The impact of bias is probably trivial. If all relevant studies were included the

effect size would probably remain largely unchanged.

� The impact of bias is probably modest. If all relevant studies were included the

effect size might shift but the key finding (that the effect is, or is not, of

substantive importance) would probably remain unchanged.

� The impact of bias may be substantial. If all relevant studies were included, the

key finding (that the effect size is, or is not, of substantive importance) could

change.

Duval and Tweedie’s Trim and Fill

As discussed above, the key idea behind the funnel plot is that publication bias may

be expected to lead to asymmetry. If there are more small studies on the right than

on the left, our concern is that there may be studies missing from the left. (In the

running example we expect suppression of studies on the left, but in other cases we

would expect suppression on the right. The algorithm requires the reviewer to

specify the expected direction.)

Trim and Fill uses an iterative procedure to remove the most extreme small studies

from the positive side of the funnel plot, re-computing the effect size at each iteration

until the funnel plot is symmetric about the (new) effect size. In theory, this will yield

an unbiased estimate of the effect size. While this trimming yields the adjusted effect

size, it also reduces the variance of the effects, yielding a too narrow confidence

interval. Therefore, the algorithm then adds the original studies back into the analysis,

and imputes a mirror image for each. This fill has no impact on the point estimate but

serves to correct the variance (Duval and Tweedie, 2000a, 2000b).

A major advantage of this approach is that it addresses an important question,

What is our best estimate of the unbiased effect size? Another nice feature of this

approach is that it lends itself to an intuitive visual display. The computer programs

that incorporate Trim and Fill are able to create a funnel plot that includes both the

observed studies and the imputed studies, so the researcher can see how the effect

size shifts when the imputed studies are included. If this shift is trivial, then one can

have more confidence that the reported effect is valid. A problem with this method

is that it depends strongly on the assumptions of the model for why studies are

missing, and the algorithm for detecting asymmetry can be influenced by one or two

aberrant studies.
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We can re-display the funnel plot, taking into account the Trim and Fill adjust-

ment. In Figure 30.3, the observed studies are shown as open circles, and the

observed point estimate in log units is shown as an open diamond at 0.185 (0.113,

0.258), corresponding to a risk ratio of 1.204 (1.120, 1.295). The seven imputed

studies are shown as filled circles, and the imputed point estimate in log units is

shown as a filled diamond at 0.156 (0.085, 0.227), corresponding to a risk ratio of

1.169 (1.089, 1.254). The ‘adjusted’ point estimate suggests a lower risk than the

original analysis. Perhaps the key point, though, is that the adjusted estimate is fairly

close to the original – in this context, a risk ratio of 1.17 has the same substantive

implications as a risk ratio of 1.20.

Restricting analysis to the larger studies

If publication bias operates primarily on smaller studies, then restricting the analy-

sis to large studies, which might be expected to be published irrespective of their

results, would in theory overcome any problems. The question then arises as to what

threshold defines a large study. We are unable to offer general guidance on this

question. A potentially useful strategy is to illustrate all possible thresholds by

drawing a cumulative meta-analysis.

A cumulative meta-analysis is a meta-analysis run first with one study, then

repeated with a second study added, then a third, and so on. Similarly, in a

cumulative forest plot, the first row shows the effect based on one study, the second
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Figure 30.3 Passive smoking and lung cancer – funnel plot with imputed studies.
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row shows the cumulative effect based on two studies, and so on. We discuss

cumulative meta-analysis in more detail in Chapter 42.

To examine the effect of different thresholds for study size, the studies are sorted

in the sequence of largest to smallest (or of most precise to least precise), and a

cumulative meta-analysis performed with the addition of each study. If the point

estimate has stabilized with the inclusion of the larger studies and does not shift with

the addition of smaller studies, then there is no reason to assume that the inclusion of

smaller studies had injected a bias (i.e. since it is the smaller studies in which study

selection is likely to be greatest). On the other hand, if the point estimate does shift

when the smaller studies are added, then there is at least a prima facie case for bias,

and one would want to investigate the reason for the shift.

This approach also provides an estimate of the effect size based solely on the larger

studies. And, even more so than Trim and Fill, this approach is entirely transparent:

We compute the effect based on the larger studies and then determine if and how the

Figure 30.4 Passive smoking and lung cancer – cumulative forest plot.
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effect shifts with the addition of the smaller studies (a clear distinction between larger

and smaller studies will not usually exist, but is not needed).

Figure 30.4 shows a cumulative forest plot of the data. Note the difference between

thecumulativeplotandthestandardversionshownearlier.Here, thefirst rowisa‘meta’

analysis based only on the Fontham et al. study. The second row is a meta-analysis

basedontwostudies (Fonthametal. andBrownsonetal.),andsoon.Thelast study tobe

added is Butler (1988), and so the point estimate and confidence interval shown on the

line labeled ‘Butler’ are identical to that shown for the summary effect on the line

labeled ‘Fixed’. Note that the scale on this plot is 0.50 to 2.00.

The studies have been sorted from the most precise to the least precise (roughly

corresponding to largest tosmallest). With the 18 largest studies in the analysis, starting

at the top (inclusive of Chan and Fung, 1982) the cumulative relative risk is 1.15. With

the addition of another 19 (smaller) studies, the point estimate shifts to the right, and the

relative risk is 1.20. As such, our estimate of the relative risk has increased. However,

the key point is that even if we had limited the analysis to the 18 larger studies, the

relative risk would have been 1.15 (with 95% confidence interval of 1.07, 1.25) and the

clinical implications probably would have been the same.

Note also that the analysis that incorporates all 37 studies assigns 83% of its

weight to the first 18 (see the bar graph in the right-hand column). In other words, if

small studies are introducing a bias, we are protected to some extent by the fact that

small studies are given less weight. Recall, however, that random-effects meta-

analyses award relatively more weight to smaller studies than fixed-effect meta-

analyses, so a cumulative meta-analysis based on a random-effects model may not

reveal such protection.

A major advantage of this approach is that it provides an estimate of the unbiased

effect size (under the strong assumptions of the model) and lends itself to an

intuitive visual display. Unlike Trim and Fill, this approach will not be thrown by

one or two aberrant studies.

SUMMARY OF THE FINDINGS FOR THE ILLUSTRATIVE EXAMPLE

The various statistical procedures approach the problem of bias from a number of

directions. One would not expect the results of the different procedures to ‘match’

each other since the procedures ask different questions. Rather, the goal should

be to synthesize the different pieces of information provided by the various

procedures.

Getting a sense of the data

There are a substantial number of studies in this analysis. While the vast majority

show an increased risk, only a few are statistically significant. This suggests that the

mechanism of publication bias based on statistical significance was not a powerful

one in this case.
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Is there evidence of bias?

The funnel plot is noticeably asymmetric, with a majority of the smaller studies

clustering to the right of the mean. This visual impression is confirmed by Egger’s

test which yields a statistically significant p-value. The rank correlation test did not

yield a significant p-value, but this could be due to the low power of the test. As a

whole the smaller studies did tend to report a higher association between passive

smoking and lung cancer than did the larger studies.

Is it possible that the observed relationship is entirely an artifact of bias?

Rosenthal’s Fail-safe N is 398, suggesting that there would need to be nearly 400 studies

with a mean risk ratio of 1.0 added to the analysis, before the cumulative effect would

become statistically nonsignificant. Similarly, Orwin’s Fail-safe N is 103, suggesting

that there would need to be over 100 studies with a mean risk ratio of 1.0 added to the

analysis before the cumulative effect would become trivial (defined as a risk ratio of

1.05). Given that the authors of the meta-analysis were able to identify only 37 studies

that looked at the relationship of passive smoking and lung cancer, it is unlikely that

nearly 400 studies, or even 103 studies, were missed. While we may have overstated the

risk caused by second-hand smoke, it is unlikely that the actual risk is zero.

What impact might the bias have on the risk ratio?

The complete meta-analysis showed that passive smoking was associated with a 20%

increase in risk of lung cancer. By contrast, the meta-analysis based on the larger studies

reported an increased risk of 16%. Similarly, the Trim and Fill method suggested that

if we removed the asymmetric studies, the increased risk would be imputed as 15%.

Earlier, we suggested that the goal of a publication bias analysis should be to

classify the results into one of three categories (a) where the impact of bias is trivial,

(b) where the impact is not trivial but the major finding is still valid, and (c) where

the major finding might be called into question. This meta-analysis seems to fall

squarely within category b. There is evidence of larger effects in the smaller studies,

which is consistent with our model for publication bias. However, there is no reason

to doubt the validity of the core finding, that passive smoking is associated with a

clinically important increase in the risk of lung cancer.

SOME IMPORTANT CAVEATS

Most of the approaches discussed in this chapter look for evidence that the effect

sizes are larger in the smaller studies, and interpret this as reflecting publication

bias. This relationship between effect size and sample size lies at the core of the

forest plot, as well as the correlation and regression tests. It also drives the algorithm

for Trim and Fill and the logic of restricting the analysis to the larger studies.

Therefore, it is important to be aware that these procedures are subject to a

number of caveats. They may yield a very different picture depending on the
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index used in the analysis (e.g. risk difference versus risk ratio). The procedures can

easily miss real dispersion. They have the potential to work only if there is a

reasonable amount of dispersion in the sample sizes and also a reasonable number

of studies. Even when these conditions are met, the tests (correlation and regression)

tend to have lower power. Therefore, our failure to find evidence of asymmetry

should not lead to a false sense of assurance.

SMALL-STUDY EFFECTS

Equally important, when there is clear evidence of asymmetry, we cannot assume

that this reflects publication bias. The effect size may be larger in small studies

because we retrieved a biased sample of the smaller studies, but it is also possible

that the effect size really is larger in smaller studies for entirely unrelated reasons.

For example, the small studies may have been performed using patients who were

quite ill, and therefore more likely to benefit from the drug (as is sometimes the case

in early trials of a new compound). Or, the small studies may have been performed

with better (or worse) quality control than the larger ones. Sterne et al. (2001) use

the term small-study effect to describe a pattern where the effect is larger in small

studies, and to highlight the fact that the mechanism for this effect is not known.

Adjustments for publication bias should always be made with this caveat in mind.

For example, we should report ‘If the asymmetry is due to bias, our analyses suggest

that the adjusted effect would fall in the range of . . .’ rather than asserting ‘the

asymmetry is due to bias, and therefore the true effect falls in the range of . . .’

CONCLUDING REMARKS

It is almost always important to include an assessment of publication bias in relation

to a meta-analysis. It will either assure the reviewer that the results are robust, or

alert them that the results are suspect. This is important to ensure the integrity of the

individual meta-analysis. It is also important to ensure the integrity of the field.

When a meta-analysis ignores the potential for bias and is later found to be

incorrect, the perception is fostered that meta-analyses cannot be trusted.

SUMMARY POINTS

� Publication bias exists when the studies included in the analysis differ system-

atically from all studies that should have been included. Typically, studies

with larger than average effects are more likely to be published, and this can

lead to an upward bias in the summary effect.

� Methods have been developed to assess the likely impact of publication bias on

any given meta-analysis. Using these methods we report that if we adjusted the
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CONTINUED

effect to remove the bias, (a) the resulting effect would be essentially

unchanged, or (b) the effect might change but the basic conclusion, that the

treatment works (or not) would not be changed, or (c) the basic conclusion

would be called into question.

� Methods developed to address publication bias require us to make many

assumptions, including the assumption that the pattern of results is due to

bias, and that this bias follows a certain model.

� Publication bias is a problem for meta-analysis, but also a problem for

narrative reviews or for persons performing any search of the literature.
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CHAPTER 31

Overview

The focus of this volume has been almost exclusively on meta-analysis of effect

sizes (though some other approaches will be addressed in Chapter 36). We compute

an effect size for each study, and it is these values that form the core of the analysis.

We use them to assess dispersion across studies, to compute a summary effect, to

compare effects across subgroups, and so on. In this part we offer some context for

this approach.

Readers who are accustomed to working with significance tests and p-values in

primary studies may wonder why we don’t synthesize these p-values. This is

addressed in Chapter 32.

Some may wonder why we compute an effect size for each study, rather than

simply aggregating the summary data (for example, summing all the cell counts for

a series of 2� 2 tables) and then computing an effect size for the final table. This is

addressed in Chapter 33.

In this volume we have worked primarily with measures that assess the impact of

treatments or the relationship between variables, but the same idea can be extended

to other kinds of measures as well. In Chapter 34 we provide an overview of some

other applications, such as estimating prevalence. We also outline some other

approaches to meta-analysis, such as the use of individual participant data, and of

Bayesian meta-analysis.
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CHAPTER 32

Effect Sizes Rather than p -Values

Introduction
Relationship between p-values and effect sizes
The distinction is important
The p-value is often misinterpreted
Narrative reviews vs. meta-analyses

INTRODUCTION

A central theme in this volume is the fact that we usually prefer to work with effect

sizes, rather than p-values. Readers who are accustomed to working with signifi-

cance tests and p-values in primary studies may wonder why we don’t synthesize

these p-values. The reason reflects a fundamental issue that applies both to

primary studies and to meta-analysis, and is the subject of this chapter. Since

narrative reviews typically work with p-values while meta-analyses typically

work with effect sizes, the distinction between effect sizes and p-values also

reflects a difference between narrative reviews and meta-analysis, and we address

this as well.

Note that meta-analysis methods are available for working with p-values, and we

will describe these in Chapter 36.

RELATIONSHIP BETWEEN p -VALUES AND EFFECT SIZES

There are two general approaches to data analysis, both in primary studies and in

meta-analysis. One is significance testing, where the researcher poses the null

hypothesis (for example, that the treatment effect is zero) and then attempts to

disprove that hypothesis. The other is effect-size estimation, where the researcher

estimates the magnitude of the effect size. Both approaches start with the same

values but express them in different ways.
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Suppose a study of independent groups reports a standardized mean difference of

0.50 with a standard error of 0.20. To perform a significance test we compute

Z ¼ d

SEd

; ð32:1Þ

and then compare the observed Z-value to the Z-value required for statistical

significance. In this example

Z ¼ 0:50

0:20
¼ 2:5000:

We then compare the observed Z-value of 2.50 with the Z-value of 1.96 (corre-

sponding to the two-tailed alpha of 0.05) and conclude that the effect is statistically

significant.

The complementary approach is to report the effect size (which reflects the

magnitude of the effect) and its confidence interval (which reflects the precision

of the estimate). In this example the effect size is d 5 0.50. The confidence interval

is given by

LLd ¼ d � 1:96� SEd ð32:2Þ

and

ULd ¼ d þ 1:96� SEd ð32:3Þ

where 1.96 corresponds to the two-tailed 0.05 significance value. Concretely, the

lower limit and upper limit for d are

LLd ¼ 0:50� 1:96� 0:20 ¼ 0:1080

and

ULd ¼ 0:50þ 1:96� 0:20 ¼ 0:8920:

The two approaches are consistent with each other in that the p-value for a test of the

null will fall under 0.05 if and only if the 95% confidence interval for the effect size

excludes the null value. We can see this in Figure 32.1. The top line reflects the

effect size approach, with a line representing the confidence interval extending from

the effect size toward the null. The bottom line reflects the significance testing

0.00 0.50 1.00–0.500.00

d = 0.50 (0.108, 0.892) 

Z = 2.5, p = 0.012

Figure 32.1 Estimating the effect size versus testing the null hypothesis.
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approach, with a line representing the nonsignificance region extending from the

null toward the effect size. The line is the same length in either case (Z� SEd),

which means that the top line will include the null if and only if the bottom line

includes the effect size.

Note. There may be small differences in the length of the line but the difference is

generally trivial.

THE DISTINCTION IS IMPORTANT

Since the two approaches are consistent with each other, the decision to use one or

the other is largely a matter of choice. However, it is an important choice, because

by focusing on different questions (the viability of the null versus the magnitude of

the effect) the two approaches shift the attention of the researcher in important

ways. While researchers in many fields tend to favor significance tests, there are

good reasons to focus on effect sizes instead.

First, the effect size is what we need to decide on a course of action. If a clinician

or patient needs to make a decision about whether or not to employ a treatment, they

want to know if the treatment reduces the risk of death by 5% or 10% or 20%, and

this is the information carried by the effect size. Similarly, if we are thinking of

implementing an intervention to increase the test scores of students, or to reduce the

number of incarcerations among at-risk juveniles, or to increase the survival time

for patients with pancreatic cancer, the question we ask is about the magnitude of

the effect. The p-value tells us only that the effect may be (or is probably not) zero.

Second, the p-value is often misinterpreted. Because researchers care about the

effect size, they tend to take whatever information they have and press it into service

as an indicator of effect size. A statistically significant p-value is assumed to reflect

a clinically important effect, and a nonsignificant p-value is assumed to reflect a

trivial (or zero) effect. However, these interpretations are not necessarily correct.

The problem with using the p-value as a surrogate for effect size is that the p-value

incorporates information about both the size of the effect and also the size of the

sample (or the precision with which the effect is estimated). While a significant

p-value may reflect a large effect size, it could also reflect a small effect size that

had been measured in a large study. Similarly, while a nonsignificant p-value may

reflect a small effect size, it could also reflect a large effect size that had been

measured in a small study.

For example, Figure 32.2 is a plot of two studies. Study A has a p-value of 0.119

while Study B has a p-value of < 0.001, which might suggest that the effect is

stronger in Study B. In fact, the effect size is the same (0.50) in both studies. The

difference in p-values reflects a difference in sample size (40 in Study A versus 200

in Study B), not a difference in effect size.

By contrast, when we work with the effect size we focus on the question of

interest, which is to estimate the magnitude of the effect. We report the effect size as

0.50, and (as a separate matter) the precision (�0.129 to 1.129 for Study A, and
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0.219 to 0.781 for Study B). Additionally, this approach avoids the mistakes out-

lined in the previous paragraph. Because we work with the effect sizes directly we

avoid the problem of interpreting nonsignificant p-values to indicate the absence of

an effect (or of interpreting significant p-values to indicate a large effect).

THE p -VALUE IS OFTEN MISINTERPRETED

While we would argue that researchers should shift their focus to effect sizes even

when working entirely with primary studies, the shift is absolutely critical when our

goal is to synthesize data from multiple studies. A narrative reviewer who works

with p-values (or with reports that were based on p-values) and uses these as the

basis for a synthesis, is facing an impossible task. Where people tend to misinterpret

a single p-value, the problem is much worse when they need to compare a series of

p-values. Consider the following three examples.

Suppose we are told that four studies reported p-values of 0.28, 0.28, 0.28, and

0.003. A reviewer working with these p-values might assume that the effect was

larger in the last study. The studies are shown in Figure 32.3. The effect size is the

same in all the studies, and the p-values differ only because the sample size was

larger in the last study.

–2.0 –1.0 0.0 1.0 2.0

d N p-value

A 0.5 40 0.119

B 0.5 200 <0.001

Std difference (d  ) and 95% confidence interval

Favours Control Favours Treatment

Figure 32.2 The p-value is a poor surrogate for effect size.

–1.0 0.0 1.0

d N p-value

Study A 0.30 80 0.182

Study B 0.30 80 0.182

Study C 0.30 80 0.182

Study D 0.30 400 0.003

Summary 0.30 640 0.001

d and 95% confidence interval

Favours Control Favours Treatment

Figure 32.3 Studies where p -values differ but effect size is the same.
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Suppose we are told that three studies each reported a p-value of 0.012. Many

would assume that the treatment effect is consistent across studies. The studies are

shown in Figure 32.4. Study A has a large effect (and poor precision), Study B has a

moderate effect (and modest precision), while Study C has a small effect (and

excellent precision).

Suppose we are told that studies A and B reported p-values of 0.057, and 0.035.

Many would assume that the effect size was higher in Study B. The studies are

shown in Figure 32.5, and it turns out that the effect was weaker in study B.

NARRATIVE REVIEWS VS. META-ANALYSES

The narrative review typically works with p-values (or with conclusions that are

based on p-values), and therefore lends itself to these kinds of mistakes. p-values that

differ are assumed to reflect different effect sizes but may not (Figure 32.3), p-values

that are the same are assumed to reflect similar effect sizes but may not (Figure 32.4),

and a more significant p-value is assumed to reflect a larger effect size when it may

actually be based on a smaller effect size (Figure 32.5). By contrast, the meta-analysis

works with effect sizes. As such it not only focuses on the question of interest (what is

the size of the effect) but allows us to compare the effect size from study to study.

There is an additional difference between meta-analysis and narrative reviews.

Where the narrative review treats each item of information as discrete (and the

–2.0 –1.0 0.0 1.0 2.0

d N p-value

A 0.9 34 0.012

B 0.5 104 0.012

C 0.1 2500 0.012

Std difference (d ) and 95% confidence interval

Favours Control Favours Treatment

Figure 32.4 Studies where p -values are the same but effect sizes differ.

–2.0 –1.0 0.0 1.0 2.0

d N p-value

A 0.5 60 0.057

B 0.3 200 0.035

Std difference (d ) and 95% confidence interval

Favours Control Favours Treatment

Figure 32.5 Studies where the more significant p -value corresponds to weaker effect size.
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synthesis takes place in the reviewer’s head), meta-analysis incorporates all of the

effect sizes in a single statistical analysis. Even if the p-value did move in tandem

with the effect size (for example, if all studies in the analysis had the same sample

size), the narrative review provides no mechanism for assessing the dispersion in

effect size from one study to the next. By contrast, meta-analysis usually works

directly with the effect size (which is separated from the sample size), and uses

established statistical techniques to isolate and quantify the true dispersion.

SUMMARY POINTS

� To synthesize data from a series of studies we need to work with the effect size

rather than the p-value from each study and we need to incorporate all of the

effect sizes in a single analysis, rather than working with discrete results from

the separate studies.

� The narrative review fails on both counts. It works with the p-values from the

primary studies (either directly, or because most studies base their results

section and discussion on the p-values). And, it tries to perform a synthesis

working with a series of discrete results.

� By contrast, meta-analysis has developed methods to meet these two goals.

It works with the effect sizes, and incorporates all of these in a single analysis.
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CHAPTER 33

Simpson’s Paradox

Introduction
Circumcision and risk of HIV infection
An example of the paradox

INTRODUCTION

To compute the summary effect in a meta-analysis we compute an effect size for

each study and then combine these effect sizes, rather than pooling the data directly.

For example, if we start with 2� 2 tables we compute an odds ratio for each table

and then combine these odds ratios. We do not pool the cell counts across tables to

create a pooled 2� 2 table and then compute the odds ratio for this table.

This approach allows us to study the dispersion of effects before proceeding to the

summary effect. For a random-effects model this approach also allows us to

incorporate the between-studies dispersion into the weights.

There is one additional reason for using this approach, and that reason is the

subject of this chapter. The reason is to ensure that each effect size is based on the

comparison of a group with its own control group, and thus avoid a problem known

as Simpson’s paradox. In some cases, particularly when we are working with

observational studies, this is a critically important feature.

To illustrate this point we present a review published by Van Howe (1999) which

concluded that circumcision is associated with increased risk of HIV. Matthias Egger

presented a critique of this review at the Cochrane Colloquium in Cape Town in 1999,

and (with O’Farrell), also published a commentary in the International Journal of STD

and AIDS (O’Farrell and Egger, 2000). What follows draws heavily on this work.

CIRCUMCISION AND RISK OF HIV INFECTION

Van Howe (1999) published a review article in the International Journal of STD and

AIDS that looked at the relationship between circumcision and HIV infection in Africa.

The article was based on data from 33 studies, which Van Howe classified into one of

three groups based on the populations studied. The High-risk populations included
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long-distance truck drivers and patients recruited at STD clinics. The Partner studies

looked at HIV infection in men whose partner was HIV positive. The Random popula-

tion surveys did not target specific groups. The prevalence of HIV in the men in these

three groups was 25%, 11% and 9%, respectively (see Table 33.1).

The data for all 33 studies are shown in Table 33.2. An odds ratio less than 1.0

means that circumcision is associated with higher risk of HIV, and an odds ratio

greater than 1.0 means that circumcision is associated with lower risk of HIV.

In the first study, Bwayo(a), the risk of HIV is 52% (92/178) for noncircumcised

versus 21% (160/772) for circumcised, yielding an odds ratio of 4.09 (lower risk for

circumcised), and so on for the remaining studies. Of the 33 studies, 8 associated

circumcision with higher risk (an odds ratio of less than 1.0), and 25 with lower risk

(an odds ratio greater than 1.0).

The same data are shown graphically in Figure 33.1.

Table 33.1 HIV as function of circumcision (by subgroup).

Sample Studies N Prevalence HIV

High risk 15 13,238 25%
Partner 7 13,515 11%
Random 11 17,267 9%
Total 33 44,020

Figure 33.1 HIV as function of circumcision – by study.
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AN EXAMPLE OF THE PARADOX

Van Howe summed the counts in each cell across the 33 studies (see the line labeled

Total in Table 33.2) to yield Table 33.3. Using this table he computed the risk of

HIV as 14% (3962/28341) for noncircumcised versus 15% (2312/15679) for cir-

cumcised, and the odds ratio as 0.94 (95% confidence interval 0.89 to 0.99) with

p-value under 0.05. Van Howe concludes that ‘When the raw data are combined, a

Table 33.2 HIV as function of circumcision – by study.

Study name Noncircumcised Circumcised Prevalence Odds Ratio

HIV+ Total HIV+ Total Noncircumcised Circumcised

High risk
Bwayo (a) 92 178 160 772 0.52 0.21 4.09
Bwayo (b) 22 68 37 237 0.32 0.16 2.59
Kreiss 59 77 254 422 0.77 0.60 2.17
Hira 418 590 10 20 0.71 0.50 2.43
Cameron 18 79 6 214 0.23 0.03 10.23
Pepin 5 47 13 256 0.11 0.05 2.23
Greenblatt 11 39 8 76 0.28 0.11 3.34
Diallo 38 84 212 1085 0.45 0.20 3.40
Simonsen 17 87 21 253 0.20 0.08 2.68
Tyndall 85 178 105 632 0.48 0.17 4.59
Nasio 86 164 137 717 0.52 0.19 4.67
Mehendal 837 4248 38 291 0.20 0.13 1.63
Bollinger 50 291 1 15 0.17 0.07 2.90
Chiasson 36 833 14 556 0.04 0.03 1.75
Sassan 75 93 415 636 0.81 0.65 2.22
Partner
Hunter 43 373 165 3930 0.12 0.04 2.97
Carael 90 195 34 79 0.46 0.43 1.13
Chao 442 5286 75 307 0.08 0.24 0.28
Moss 24 40 12 29 0.60 0.41 2.13
Allen 275 887 132 456 0.31 0.29 1.10
Sedlin 32 58 33 73 0.55 0.45 1.49
Konde-Luc 153 1669 6 133 0.09 0.05 2.14
Random population
Barongo 55 1411 42 684 0.04 0.06 0.62
Grosskurth 158 4762 61 1087 0.03 0.06 0.58
Van de Perre 46 270 6 32 0.17 0.19 0.89
Seed 171 593 51 243 0.29 0.21 1.53
Malamba 111 225 21 68 0.49 0.31 2.18
Quigley 101 373 48 169 0.27 0.28 0.94
Urassa 1 56 1357 42 642 0.04 0.07 0.61
Urassa 2 105 2145 32 458 0.05 0.07 0.69
Urassa 3 38 347 19 177 0.11 0.11 1.02
Urassa 4 112 828 54 746 0.14 0.07 2.00
Urassa 5 101 466 48 184 0.22 0.26 0.78
Total 3962 28341 2312 15679 0.14 0.15 0.94
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man with a circumcised penis is at greater risk of acquiring and transmitting HIV

than a man with a non-circumcised penis.’

This conclusion seems to be at odds with the full table of data, where the preponder-

ance of studies (25 of the 33) had odds ratios greater than 1.0, meaning that circumci-

sion was associated with lower risk of HIV. This anomaly is also evident on the plot,

where 25 studies line up on the right-side of 1.0, with only 8 on the left. Also, the 8

studies on the left are not large enough to have pulled the effect so far to the left.

Therefore, it seems counter-intuitive that the summary effect should fall to the left.

In fact, this intuition is correct. When the data are analyzed using standard meta-

analysis techniques, circumcision is associated with a lower risk of HIV. Under the

random-effects model the odds ratio is 1.67 with a 95% confidence interval of 1.25

to 2.24, Z of 3.42 and p-value of 0.001. The fixed-effect model is not appropriate

here since the effects are clearly heterogeneous (Q 5 419, df 5 32, p<0.0001)

but the fixed-effect model would lead to the same conclusion with an odds ratio

of 1.40, 95% confidence interval of 1.29 to 1.51, Z 5 8.43, and a p-value of

<0.0001. These findings are consistent with the visual impression of the data, and

contradict Van Howe’s conclusions.

The reason that Van Howe reported a higher risk for circumcision is that rather

than compute an effect size for each study and then pool these effects, he pooled the

2� 2 tables for each study and then used the combined table to compute the odds

ratio. The reason that this matters is as follows.

Recall that the 33 studies included three kinds of populations, High risk,

Partners, and Random, with prevalence rates of 25%, 11% and 9%, respectively.

It turns out that a disproportionate number of the circumcised patients were from the

High risk studies. Among circumcised persons 39% came from the high risk studies

while only 29% came from the Random studies. Among the noncircumcised, by

contrast, 25% came from the high risk studies while 45% came from the Random

studies. The proportion of noncircumcised and circumcised subjects drawn from

each kind of study is shown in Table 33.4.

Table 33.3 HIV as a function of circumcision – full population.

HIV Positive HIV Negative Total % HIV

Noncircumcised 3962 24379 28341 14%
Circumcised 2312 13367 15679 15%

Table 33.4 HIV as a function of circumcision – by risk group.

High Risk Partner Random

Noncircumcised 25% 30% 45%
Circumcised 39% 32% 29%
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In this light, the labels in Table 33.3 might better reflect the facts if we modified

them as shown in Table 33.5. Rather than Noncircumcised versus Circumcised, the

rows are labeled Noncircumcised low HIV prevalence population versus Circum-

cised, high HIV prevalence population.

In sum, the problem with Van Howe’s analysis is that by summing the raw data he

introduced confounding. That is, the noncircumcised men cannot legitimately be

compared with the circumcised population because they differ in other ways. The

increased risk of HIV that appeared to be associated with circumcision was also

associated with an array of high-risk behaviors (and more likely due to those than to

the circumcision). By contrast, when we compute an effect size for each study we

control for these confounds (at least to the extent possible when working with

observational studies).

Egger also showed what happens if we compute the odds ratio within each of the

three groups that Van Howe had delineated. Within the high risk group, circumcision is

associated with a decreased risk (by about two-thirds) of HIV. Within each of the other

two groups of studies the relationship between circumcision and HIV (if any) is small

(see Figure 33.2).

Egger used this pattern of effects to formulate several hypotheses about the mechan-

isms by which circumcision might have an impact on the risk of HIV infection, and

suggested that these be tested in future studies. This is an elegant and appropriate use of

meta-analysis, to direct the formulation and conduct of future studies.

Egger also noted that given the heterogeneity of effects it would be a mistake to

draw any conclusions from the analysis at this point. As Egger said in concluding

his presentation at Capetown, ‘I am not suggesting that you all run right out and get

circumcised.’

The problem addressed in this chapter has been known to statisticians for a long

time, and is generally called Simpson’s paradox. The term paradox refers to the fact

that one group can do better in every one of the included studies, but still do worse

when the raw data are pooled. The problem is not limited to studies that use

proportions, but can exist also in studies that use means or other indices. The

problem exists only when the base rate (or mean) varies from study to study and

the proportion of participants from each group varies as well. For this reason, the

problem is generally limited to observational studies, although it can exist in

randomized trials when allocation ratios vary from study to study.

For readers who choose to savor these papers in the original, note that the Van Howe

paper seems to include a number of typographical errors which we corrected for this

Table 33.5 HIV as a function of circumcision/risk group – full population.

HIV Positive HIV Negative Total % HIV

Noncircumcised, low HIV prevalence population 3962 24379 28341 14%
Circumcised, high HIV prevalence population 2312 13367 15679 15%
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chapter (in particular, the Van Howe abstract reverses the direction of the odds ratio

from the one used in the body of paper). Note also that Egger raises many questions

about Van Howe’s methodology in addition to the ones outlined here.

SUMMARY POINTS

� In a meta-analysis we compute an effect size for each study and combine these

effect sizes, rather than combining the summary data and then computing an

effect size for the combined data.

� This allows us to determine whether or not the effects are consistent across

studies.

� This also ensures that each study serves as its own control, which minimizes

the potential impact of confounders.

� If we were to pool data across studies and then compute the effect size from

the pooled data, we may get the wrong answer, due to Simpson’s paradox.
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CHAPTER 34

Generality of the Basic Inverse-Variance
Method

Introduction
Other effect sizes
Other methods for estimating effect sizes
Individual participant data meta-analyses
Bayesian approaches

INTRODUCTION

The basic idea of meta-analysis is to compute an effect size from each of several

studies, and to calculate a weighted average of these effect size estimates. We have

shown how the weights can reflect either a fixed-effect assumption or a random-

effects assumption. We have also seen how we can examine differences in effect

sizes across studies, using subgroup analyses and meta-regression.

In all of our examples so far, we have applied these methods to comparative

studies or studies of association. For example, we might compare the outcomes of

people randomized to different treatments in a clinical trial by looking at the

difference in means or the ratio of risks. Or, we could use the same techniques to

compare the scores in two existing groups, such as males and females.

Precisely the same approach to meta-analysis can be used to work with other

kinds of studies and other kinds of data. We will use the term point estimate as a

more generic term than effect size estimate, to reflect the fact that we are not

necessarily looking at the effect of one thing on another. The only requirements

for meta-analysis to be possible are that

� The point estimate can be expressed as a single number.

� We can compute a variance for the point estimate.
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OTHER EFFECT SIZES

We now provide some examples of situations in which these requirements are met

and where meta-analysis can therefore be used to combine findings across studies.

We do not attempt to provide detailed methodology for any of these. Rather, our aim

is to provide a flavor of the range of applications for the basic methods. Many of the

relevant formulas are provided in the companion volume, Computing Effect Sizes for

Meta-Analysis (Borenstein, Hedges, Higgins and Rothstein, 2009, John Wiley &

Sons, Ltd).

Single descriptive statistics

A meta-analysis can be used to combine single descriptive statistics. For example, a

sample of continuous measures might be summarized simply by its mean, and a

meta-analysis might be performed to synthesize means across samples (or studies).

Similarly, a sample of binary outcomes might be summarized simply by the

proportion of successes, the risk of an event, or the prevalence of a condition. For

example, a meta-analysis was used to assess the prevalence of food allergies in the

general population (Rona et al., 2007). Prevalence was estimated from each study,

along with its variance, and combined in a meta-analysis using standard techniques.

However, as is often the case for single-group studies, very substantial heteroge-

neity was observed. For instance, while the average prevalence of self-reported milk

allergy was a little over 3% in a meta-analysis, with a tight 95% confidence interval

from around 2.5% to 4%, the results from the individual studies ranged from

1.2% to 17%.

Physical constants

Meta-analysis methods have a long history in the field of physics. For example,

Raymond Birge published a paper on methods for combining estimates of physical

constants from different experiments in 1932. In 1941, he summarized numerous

attempts that had been made to measure the speed of light in a vacuum, and

calculated weighted averages of their findings (Birge, 1941). A similar approach

has been used for other important constants. These are essentially meta-analyses of

the multiple experiments, although the term meta-analysis was not introduced

until 1976.

Two-group studies with other types of data

Although we have described in some detail different indices for comparing two

groups when the outcomes are continuous or binary, we should make it clear that

other types of data may be encountered. Three particular different types of data are

as follows.
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Ordinal data arise when each individual is assigned to one of three or more

categories, and these categories have a logical ordering. For example, the symp-

toms of a condition after a period of treatment might be assessed as ‘mild’,

‘moderate’ or ‘severe’. A single effect size can be computed from studies with

ordinal data for use in meta-analysis. For example, under assumptions of a propor-

tional odds model, an odds ratio is available (this is not computed in the same way

as in Chapter 5).

Time-to-event (survival) data are used when we know how long each person was

followed, and the outcome (either the event occurred or the follow-up period

ended). Typically we compute a hazard ratio to reflect the treatment effect in

each study and use meta-analysis to synthesize these hazard ratios across studies.

Rate data arise when the data includes both a period of observation and the

number of times a specific event occurs during this period. This type of data is used

to determine whether the incidence of a (repeatable) event is lower in one group

than the other. In particular, it allows for individuals to have more than one event.

Methods are available for comparing two groups when any of these types of data

are encountered. As noted above, the sorts of indices that are most commonly

encountered are odds ratios for ordinal data, hazard ratios for time-to-event data

and rate ratios for rate data. The meta-analysis would proceed in the same way, in

each of these particular cases working in the logarithmic scale because the indices

are ratios rather than differences.

Three-group studies

We provide one example of how basic meta-analysis methods have been applied to

studies with three groups, in the field of genetic epidemiology. There is consider-

able interest in understanding how our genetic make-up affects our risk of devel-

oping diseases such as cancer and cardiovascular disease. Many studies are

therefore investigating these relationships by measuring genetic variants and look-

ing at the association between these variants and disease. Most genetic variants have

two versions, called alleles. Crudely put, one of these alleles may usually be

considered the normal variant, with the other having arisen as a mutation at some

point during human evolution. For each genetic variant, we receive one copy from

our father and one from our mother. We therefore end up with one of three possible

combinations: two normal alleles, two mutant alleles or one normal allele and one

mutant allele.

A simple genetic association study divides individuals into three groups accord-

ing to their genetic variants, and cross-tabulates these groups against disease status.

For example, one study by Lacasaña-Navarro and colleagues (2006) measured a

specific variant in the methylenetetrahydrofolate reductase (MTHFR) gene, and

compared the distributions of people having different combinations of alleles with

their gastric cancer status. The two alleles for this specific variant (at position 677 in

the gene) are termed 677C and 677T. The results are shown in Table 34.1.
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There are several ways in which this study can be included in a basic meta-analysis.

However, comparisons among three groups cannot be reduced to a single number

without making assumptions or ignoring some of the information. A published meta-

analysis by Boccia (2008) and colleagues created a 2� 2 table by excluding the

middle (normal, mutation) group. Thus, they compared people with two mutation

alleles with people with two normal alleles. This simple approach imposes no

assumptions about the way in which the genetic variants determine risk, but does

not make use of all of the data. To use all of the data in a standard meta-analysis, we

have to make assumptions. Three common assumptions are

� A dominant genetic model, in which we assume that at least one mutation is

sufficient to alter risk of disease (and it does not matter whether one or two

mutation alleles is present)

� A recessive model, in which we assume both mutation alleles are required to alter

risk of disease (and having one is no different from having none)

� An additive model, in which we assume there is a similar change in risk for each

additional mutation allele

To perform a meta-analysis assuming a dominant or a recessive model, the 3� 2

table from each study is collapsed into a 2� 2 table from each study, by combining

either the second two rows (for a dominant model) or the first two rows (recessive

model) in the table above. To perform an additive model, alternative methods need

to be used for each study such as logistic regression. In every case, however, a log

odds ratio and its variance is obtained for each study, and the meta-analysis

proceeds in exactly the same way as we have described earlier in the book.

Regression coefficients

A final example of the broad range of types of study amenable to meta-analysis is

the combination of regression coefficients, or beta weights. This is the synthesis of

results from several regression analyses, and should not to be confused with meta-

regression. For example, Sirmans and colleagues (2006) were interested in the

relationship between house price and various characteristics of the house such as

its square footage, age, number of bedrooms and presence of a swimming pool.

Tackling each of these separately, they compiled studies that have looked at the

Table 34.1 Simple example of a genetic association study.

Genotype Interpretation Cases Controls Total

677C, 677C normal, normal 56 144 200
677C, 677T normal, mutation 85 179 264
677T, 677T mutation, mutation 60 104 164
Total 201 427 628
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relationship (e.g. between square footage and house price) and obtained regression

coefficients to characterize the relationship. These could then be combined in a

meta-analysis, using the variances of the coefficients in the weights.

However, the main aim of these authors was not simply to obtain an overall

regression coefficient, but to examine whether the regression coefficients depend on

other study-level characteristics, such as the location and timing of the study, and

whether or not the regression analysis controlled for other house characteristics (e.g.

number of bedrooms). The primary analysis is therefore a meta-regression of

regression coefficients.

OTHER METHODS FOR ESTIMATING EFFECT SIZES

In the previous section we discussed how the basic meta-analysis method of

computing inverse-variance weighted averages can be applied to diverse types of

studies and to diverse types of data. In a fixed-effect meta-analysis, the weighted

average provides a summary estimate of a common effect size. In a random-effects

meta-analysis, the weighted average (using revised weights) provides an estimate of

the mean effect size across studies. In a random-effects meta-analysis we also

compute an estimate of the standard deviation of effect sizes across studies.

The inverse-variance weighted average approach is not the only way to perform a

meta-analysis. Both fixed-effect meta-analyses and random-effects meta-analyses

can be undertaken using a variety of other statistical methods. The need to consider

other methods typically arises either to refine the analysis of data within a study, or

to refine the analysis of variation across studies (or, quite frequently, for both).

Refined methods tailored to the type of data within a study

First, we may wish to analyze the data within a study using methods specific to the

type of data we have. For instance, if we have 2� 2 tables from binary data, the

methods we have described involve the computation of an effect size for each study

(such as a log odds ratio or a risk difference) and its variance. For most purposes this

is appropriate, but when studies are small, or when events are rare, other methods

can have better statistical properties. To understand why this might be, note that the

basic inverse-variance method assumes that the variance from each study is truly

the variance of that study’s effect size estimate. However, in reality the variance is

only an estimate of the true variance. For large studies, the estimate is close to the

true variance and the assumption is not problematic. For small studies, the variance

may not be well estimated.

Methods based directly on 2� 2 tables for binary data do not require us to estimate

the variance. Some examples are the Mantel-Haenszel method and the one-step method

commonly referred to as the Peto method. We discuss these methods in Chapter 37.

Another situation in which we might prefer to analyse a study using methods

specific to the type of data is when we have the original data from each study, often
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referred to as individual participant data. We could compute a standardized mean

difference, or an odds ratio, or some other effect size, from these data and perform

an inverse-variance meta-analysis. However, we might alternatively wish to per-

form the meta-analysis directly on the complete original dataset. We discuss the

potential advantages of this approach in the next section.

Refined methods for analysing between-study variation

The second reason for considering other methods for meta-analysis is that we may

wish to combine results across studies using more sophisticated statistical techni-

ques. In particular, in random-effects meta-analysis, we estimate the between-study

standard deviation, � . When the number of studies is small, this can be estimated

with considerable error, as we describe in Chapters 17 and 40. Methods are avail-

able that allow uncertainty in � to be taken into account. One such possibility is a

Bayesian approach to the meta-analysis, which we discuss at the end of this chapter.

A further consideration in the random-effects inverse-variance method is the

assumption that the true effects in different studies follow a normal distribution. It

is usually very difficult to assess whether this assumption is reasonable. Methods

are available that assume other distributions, and even methods that allow the data

to determine the shape of the distribution. These are advanced methods that so far

have mostly been considered only by statistical methods researchers.

INDIVIDUAL PARTICIPANT DATA META-ANALYSES

When the meta-analyst has access to all of the original data from each study, the

meta-analysis may be referred to as an individual participant data (or individual

patient data) meta-analysis. This usually involves collaboration with the authors of

the original studies included in the meta-analysis. There are many advantages to

individual participant data (IPD) meta-analysis over literature-based meta-analysis

(or summary data meta-analysis), which are summarized by Stewart and Tierney

(2002). These include

� Being able to perform consistent data checking and (if necessary) data cleaning

� Having available a complete and up-to-date dataset on which to base analyses

� Being able to perform a wide variety of statistical analyses in the same way in

every study

� Being able to examine the effects of participant-level covariates

� Further benefits of having direct contact with study authors, for example in

collating descriptive information about the studies, interpreting results and iden-

tifying further studies.

With access to individual participant data, the range of possible analysis methods is

substantial. Methods can be broadly categorized as methods that analyze each study

separately and then combine effect sizes using standard meta-analysis techniques,

and (on the other hand) methods that analyze all of the data in one go.
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Applying standard meta-analysis methods to individual participant data

A common approach is to analyze each study in a consistent way and to perform an

inverse-variance meta-analysis on the resulting effect size estimates and their

variances. For example, a mean difference could be computed from each study,

and these combined using the standard methods.

Having access to IPD, however, allows for consistent, and even complex, ana-

lyses of the data from each study. For instance, a problem sometimes encountered in

summary data meta-analysis is that studies provide effect size estimates that are

adjusted for different sets of covariates. For example, one study might adjust for age

and sex; and another might adjust for age, sex and smoking behavior. With access to

the raw data, the meta-analyst can adjust for the same covariates in every study.

Another common limitation of summary data is that studies present basic results in

such different ways that a common effect size cannot readily be computed for each

study. This is particularly the case for time-to-event data. Because a pair of observa-

tions is collected on each individual (the length of observation and whether the event

occurs at the end of this period), time-to-event data cannot conveniently be reduced to

simple summaries such as a 2� 2 table. Thus, only results of analyses tend to be

presented, which may differ across studies. Many of the existing IPD meta-analyses

in the medical area address time-to-event outcomes, since a common method of

analysis can be applied to each study prior to the meta-analysis.

Analyzing individual patient data in a single analysis

Given IPD for a series of primary studies, any method that could be used to analyze

the individual studies can be used to analyze the complete data set. The key principle

underlying the analysis of an IPD dataset is that the individual identities of the studies

are respected. In this way we avoid the problem of Simpson’s paradox discussed in

Chapter 33. In statistical terminology, we say that the analysis is stratified by study.

This is often achieved in practice by including a dummy covariate for each study.

An advantage of analyzing all IPD together (rather than analyzing each study

separately and then synthesizing the effect sizes) is that information may be

borrowed from one study to another. For example, suppose we are interested in

whether the effect of a weight-loss intervention depends on age, and we have

several small trials of the intervention, each performed in a similar population

with mixed ages. We cannot use meta-regression for such a question because age

is a participant-level rather than a study-level covariate (the mean age will be

roughly the same for every study). If we have IPD from the trials, including each

participant’s age, then we can obtain a powerful analysis of the effect of age on

intervention by analyzing all of the data at once, providing we stratify by study.

We can decide to borrow information from one study to another to further

increase the power. For example, we could assume that the standard deviation

for weight losses is the same in every study.
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In fact, every one of the meta-analysis models we have discussed up to this point

in the book can be performed in a single analysis of IPD, by making different

assumptions in the statistical model. However, some of the random-effects models

are difficult to implement. Therefore, the simpler approach of analyzing each study

individually, and then synthesizing the effect sizes in a meta-analysis, remains the

most popular in practice.

BAYESIAN APPROACHES

The methods we describe in this book are classical, or frequentist, methods for

statistics. They revolve around estimating unknown parameters along with con-

fidence intervals, and performing statistical tests in order to determine the extent to

which the results are compatible with a null hypothesis (the p-value).

An alternative approach to statistics is the Bayesian approach. This stems from a

different philosophy of probability, and in particular from an interpretation of

probability as an uncertainty (or a belief) rather than a frequency. Bayesian statistics

attaches probability distributions to the parameters of interest. The main parameters

of interest in a meta-analysis are the overall mean effect size and, in a random-

effects meta-analysis, the standard deviation (�) of true effect sizes across studies.

We might, for example, represent our uncertainty about an overall mean log odds

ratio by attaching a normal distribution centered on our best guess and with tails

describing how confident we are about it.

A Bayesian analysis starts by attaching a prior probability distribution to each

unknown quantity. This describes a priori uncertainty (or belief) about the

quantity before seeing the data. In many cases, the prior distribution is used to

express ignorance (e.g. as a flat distribution). The Bayesian analysis itself com-

bines the prior distribution with the data, turning it into a posterior probability

distribution for the unknown quantity. When the prior distribution represents prior

ignorance, the posterior distribution is simply a summary of what the data tell us

about the quantity. Thus a Bayesian analysis can be viewed as a generalization of

the classical method, with the flexibility to include prior information in a formal

way if desired.

Instead of producing confidence intervals, Bayesian analyses produce credible

intervals (sometimes called probability intervals, and not to be confused with the

credibility interval described in Chapter 38). A 95% credible interval from a

Bayesian analysis is a summary of the posterior distribution, such that the prob-

ability is equal to 95% that the true quantity is within the interval. This is a

particularly intuitive way to express uncertainty, and is one of the most appealing

aspects of a Bayesian analysis.

We can make further statements about the unknown quantity after a Bayesian

analysis. In particular, we can state the probability that the quantity lies in any

specified range. For instance, we can state the probability that the quantity is smaller
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than (or bigger than) zero. This is a bit like a p-value, but is a more direct statement

since it does not require a null hypothesis for its interpretation.

The controversial aspect of Bayesian meta-analysis is the source of the prior

distribution. In practice, several different prior distributions are often compared. If

very different prior distributions all lead to the same posterior distribution, then we

can conclude that the data are sufficiently convincing to overwhelm any a priori

belief, and the analysis might be considered robust. However, if the prior is

influential, then this usually means that there are insufficient data, and both a

Bayesian and a classical meta-analysis ought to be interpreted with some caution.

The combination of prior distribution and data to produce the posterior distribu-

tion is computationally very demanding. This is partly why Bayesian methods have

only become prominent in recent years. Flexible software is now available for

performing Bayesian analyses, particularly the WinBUGS software. In fact, this

software is so flexible that very complicated meta-analysis models can be fitted

even more easily than in a classical framework. We therefore expect to see more

meta-analyses undertaken using Bayesian methods, and for the models they imple-

ment to become more and more complex.

SUMMARY POINTS

� The basic inverse-variance approach to meta-analysis can be applied to a very

large class of problems. All we need is a point estimate and its variance from

each study.

� Meta-analyses that use the raw data from every included study are often called

individual patient data meta-analyses, at least in the medical area. These offer

unrivalled flexibility in methods.

� Bayesian methods are based on different philosophical approach to statistics.

Results of Bayesian analyses have an appealing interpretation, and they

readily allow more complex models to be fitted to meta-analysis datasets,

but they require specialized software and require specification of a prior

distribution for each parameter.

Further reading

Stewart, L.A. & Tierney, J.F. (2002). To IPD or not to IPD? Advantages and disadvantages of

systematic reviews using individual patient data. Evaluation and the Health Professions

25: 76–97.

Sutton, A.J. & Abrams, K.R. (2001). Bayesian methods in meta-analysis and evidence synthesis.

Statistical Methods in Medical Research 10: 277–303.
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CHAPTER 35

Overview

Thus far, we have concentrated on a specific approach to meta-analysis, based on

obtaining an estimate of effect size, along with its variance, from each study. These

effect estimates are combined across studies using a weighted average, with inverse

variances as weights. In this Part we consider some alternate approaches.

In Chapter 36 we discuss methods based on combining p-values, rather than

effect sizes, and also a method based on direction of effect in each study (ignoring

the magnitude of the effect). We explain how these methods work, outline their

limitations, and discuss when it may be appropriate to apply them.

In Chapter 37 we discuss further methods for dichotomous (binary) outcome data.

These include the Mantel-Haenszel methods and a ‘one-step’ method known widely

as the Peto method.

Finally, in Chapter 38 we discuss further methods for correlational data, detailing

in particular a method due to Hunter and Schmidt known to many as psychometric

meta-analysis.
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CHAPTER 36

Meta-Analysis Methods Based on
Direction and p -Values

Introduction
Vote counting
The sign test
Combining p -values

INTRODUCTION

In this volume we have concentrated almost exclusively on meta-analysis of effect sizes.

This reflects current practice, as the overwhelming majority of meta-analyses published

over the past two decades are meta-analyses of effect sizes. A meta-analysis of effect

sizes addresses the magnitude of the effect, which is what we care about. By contrast, a

meta-analysis of p-values tells us only that the effect is probably not zero.

Nevertheless, there are cases where a meta-analysis of effect sizes is not possible,

and in those cases the only option may be to test a null hypothesis. In this chapter we

outline a few options for this goal and explain where these might be used.

VOTE COUNTING

Vote counting is the process of counting the number of studies that are statistically

significant and the number that are not, and then choosing the winner. This

approach is discussed in Chapter 28 where we explain why it has no validity

whatsoever. We mention it here only to be sure that it is not confused with the

sign test (below) which is a valid approach.

THE SIGN TEST

In a sign test, we count the number of studies with findings in one direction and

compare this with the number of studies with findings in the other direction,
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irrespective of whether the findings were statistically significant. The sign test takes

into account neither the actual effect magnitudes observed in the studies nor the

amount of evidence within each study (for example, the sample sizes). As such it has

very limited value. However, it might be considered in any of the following cases.

� When no numerical data are provided from the studies, but directions of effect are

provided

� When the numerical data are of such different types that they cannot be combined

statistically

� When the studies are so diverse in their populations or other characteristics that a

pooled effect size is meaningless, but the studies are still addressing a question

sufficiently similar that the direction of the effect is meaningful.

If a treatment is truly ineffective, we would expect half of the studies to lie on each

side of the no-effect line. We can test this formally by comparing the number of

studies in one direction versus the null value of 50%.

For example, in the streptokinase meta-analysis (Chapter 2), 25 out of 33 studies

favored the treatment (i.e. had a point estimate of the risk ratio less than 1.0), and 8

studies favored the control (i.e. had a point estimate of the risk ratio greater than 1.0).

The two-sided p-value for the sign test is 0.00455 (in Excel, the function 5 2*BINOM-

DIST(8,33,0.5,TRUE) returns 0.00455). Or, the one-sided p-value for the sign test is

0.0023 (the function 5BINOMDIST(8,33,0.5,TRUE) returns 0.0023). Note that in

Excel we need to enter the smaller of the two numbers and the total (here, 8 and 33).

COMBINING p -VALUES

Another option when we don’t want to work with effect sizes is to work directly

with the p-values from each test, to yield an overall p-value. Unlike the sign test or

the p-value for a summary effect size, both of which test the null that the mean effect

across studies is zero (or 1.0 for a ratio), the tests based on combining p-values tests

the null that the effect size is zero in all studies. In other words, if we combine p-

values and obtain a significant effect, we would conclude that the effect is real in at

least one of the included studies.

In deciding which approach to use (a meta-analysis of effect sizes or of p-values),

the fact that some (or all) studies reported p-values (and not an effect size) should

not be a factor. This is because starting with the p-value and some additional

information (such as the sample size) we can usually back-compute the effect size

and its variance, and then perform a meta-analysis of the effect sizes.

Rather, the approach of combining p-values may be considered under the follow-

ing conditions.

� If we want to test the null that the effect is zero in all the studies. This might be the

case, for example, if each study looked for a different serious side effect for a

drug, and we want to know if there is evidence that any of the side effects is

present. We assume here that the separate tests have adequate power.
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� When we have the p-values but not the sample sizes from each study (and

therefore cannot back-compute the effect size)

� When the studies are so diverse in their populations or other characteristics that a

pooled effect size is meaningless, but it is meaningful to ask if any of the effects is

nonzero.

The last two of these points are the same as those we listed for the sign test, but here

we have more information from each study (the p-value as well as the direction of

effect). Since the null hypothesis is different for the sign test (a nonzero effect on

average) than for the test of combined p-values (a nonzero effect in at least one

study), we would select the test that matches our null hypothesis.

We describe two methods for performing meta-analyses of p-values. For both

methods it is critical that the starting point for the analysis is a set of exact one-tailed

(or one-sided) p-values. This means that an effect in one direction yields a p-value

in the range of 0.0 to< 0.5, while an effect in the other direction yields a p-value in

the range of > 0.5 to 1.0. A study where the effect was identical in both groups

would have a p-value of exactly 0.50.

If we start with a two-tailed p-value, we convert this to a one-tailed p-value as

follows. If the effect is in the expected direction, then

p15
p2

2
: ð36:1Þ

If the effect is in the other direction, then

p151� p2

2

� �
: ð36:2Þ

One-tailed p-values contain information about the direction of effect, whereas two-

tailed p-values do not. For instance, consider the studies in Figure 36.1. The first

two studies (A and B) have the same two-sided p-value, but have effects in opposite

directions: the first favors control but the second favors treatment. The one-tailed p-

value reflects this.

The same is true for studies C and D. We include these extra studies in the schematic

as a reminder that the methods we describe for combining p-values treat studies A and C

in exactly the same way, and treat studies B and D in exactly the same way. In other

words, they do not distinguish between a p-value arising from a large effect in a small

study and the same p-value arising from a smaller effect in a larger study.

As was true when we were working with effect sizes (and using a p-value to

compute the effect size) we need to start with the actual p-value. If we are told only

that the p-value falls under 0.05 (for example) we may elect to work with 0.05 or to

omit the study from the analysis. Using 0.05 when the actual value could be much

lower than 0.05 will lower the chances of a type I error if the null is true, but increase

the chances of a type II error if the null is false.
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The first test based on p-values is known as Fisher’s method. We calculate

X25�2
Xk

i51

ln pið Þ ; ð36:3Þ

that is, minus 2 times the sum of the logged p-values, where pi is the one-sided

p-value from study (i) and k is the number of studies. Under the null hypothesis of no

effect in every study, X2 will follow a central chi-squared distribution with degrees

of freedom equal to 2� k, so we can report a p-value for the aggregated evidence

across studies.

The second method is known as Stouffer’s method. We calculate a standard

normal deviate, Zi, from each one-sided p-value (this standard normal deviate is

often calculated directly from the effect size and its standard error rather than via the

p-value), and calculate

ZStouffer5

Xk

i51

Ziffiffiffi
k
p ;

ð36:4Þ

where k is again the number of studies. Under the null hypothesis of no effect

in every study, ZStouffer will follow a standard normal distribution, so we can report a

p-value for the aggregated evidence across studies.
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Figure 36.1 Effect size in four fictional studies.
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We will again use the streptokinase example to illustrate these methods (but note

that we are testing a different null hypothesis than we had earlier). Table 36.1

presents risk ratios and their 95% confidence intervals for the 33 studies. The Z

statistics are obtained as

Zi5
ln RRið Þ

ln Upper limitið Þ � ln Lower limitð Þð Þ= 2� 1:96ð Þ ; ð36:5Þ

Table 36.1 Streptokinase data – calculations for meta-analyses of p-values.

Study Risk
ratio

Lower
limit

Upper
limit

Z Two-tailed
p-value

One-tailed
p-value

Log(one-tailed
p-value)

Fletcher 0.229 0.030 1.750 �1.420 0.155 0.078 �2.554
Dewar 0.571 0.196 1.665 �1.026 0.305 0.152 �1.881
European 1 1.349 0.743 2.451 0.984 0.325 0.837 �0.177
European 2 0.703 0.534 0.925 �2.519 0.012 0.006 �5.134
Heikinheimo 1.223 0.669 2.237 0.654 0.513 0.743 �0.296
Italian 1.011 0.551 1.853 0.034 0.973 0.513 �0.667
Australian 1 0.779 0.478 1.268 �1.005 0.315 0.157 �1.849
Frankfurt 2 0.457 0.252 0.828 �2.581 0.010 0.005 �5.315
NHLBI SMIT 2.377 0.649 8.709 1.307 0.191 0.904 �0.100
Frank 0.964 0.332 2.801 �0.068 0.946 0.473 �0.749
Valere 1.048 0.481 2.282 0.117 0.907 0.547 �0.604
Klein 2.571 0.339 19.481 0.914 0.361 0.820 �0.199
UK-Collab 0.922 0.609 1.394 �0.386 0.699 0.350 �1.051
Austrian 0.608 0.417 0.886 �2.590 0.010 0.005 �5.338
Australian 2 0.702 0.443 1.110 �1.514 0.130 0.065 �2.734
Lasierra 0.282 0.034 2.340 �1.172 0.241 0.121 �2.116
N Ger Collab 1.161 0.840 1.604 0.905 0.366 0.817 �0.202
Witchitz 0.813 0.263 2.506 �0.361 0.718 0.359 �1.025
European 3 0.612 0.356 1.050 �1.782 0.075 0.037 �3.286
ISAM 0.880 0.619 1.250 �0.713 0.476 0.238 �1.436
GISSI-1 0.827 0.749 0.914 �3.738 0.000 0.000 �9.286
Olson 0.429 0.041 4.439 �0.710 0.477 0.239 �1.432
Baroffio 0.079 0.005 1.350 �1.752 0.080 0.040 �3.222
Schreiber 0.333 0.038 2.925 �0.991 0.322 0.161 �1.828
Cribier 1.095 0.073 16.427 0.066 0.948 0.526 �0.642
Sainsous 0.500 0.132 1.887 �1.023 0.306 0.153 �1.876
Durand 0.621 0.151 2.555 �0.660 0.510 0.255 �1.367
White 0.174 0.040 0.761 �2.323 0.020 0.010 �4.596
Bassand 0.604 0.188 1.944 �0.845 0.398 0.199 �1.614
Vlay 0.462 0.048 4.461 �0.668 0.504 0.252 �1.378
Kennedy 0.654 0.322 1.331 �1.171 0.241 0.121 �2.114
ISIS-2 0.769 0.704 0.839 �5.869 0.000 0.000 �19.940
Wisenberg 0.244 0.051 1.164 �1.770 0.077 0.038 �3.260

Sum �33.677 �89.268
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or

Zi5
ln RRið Þ

SE lnðRRiÞ
; ð36:6Þ

where the numerator is the log risk ratio and the denominator is the standard error of

the log risk ratio. The one-tailed p-values are obtained by comparing the Z values

with a standard normal distribution. In Excel, the function 5NORMSDIST(Z) can

be used. For example, 5NORMSDIST(�1.420) returns 0.078 for the Fletcher

study. The sum of the Z values is –33.677, and the sum of the logs of the one-

sided p-values is – 89.268.

For Fisher’s method, we compute

X25 �2��89:2685178:5360:

The overall p-value across studies is obtained by comparing this with a chi-

squared distribution with 66 degrees of freedom. In Excel, the function

5CHIDIST(178.54,66) returns a very small p-value ( p 5 2.6� 10�12).

For Stouffer’s method, we compute

ZStouffer5
�33:677ffiffiffiffiffi

33
p 5�5:862:

The overall p-value across studies is obtained by comparing this with a standard

normal distribution. In Excel, the function 5NORMSDIST(–5.862) returns a very

small p-value ( p 5 2.3� 10�9).

Both methods provide strong evidence of the benefit of streptokinase in at least

one study.

SUMMARY POINTS

� A meta-analysis of effect sizes is generally the preferred approach since it

addresses the issue of interest (What is the magnitude of the effect?) rather

than the null hypothesis (Is the effect size zero?). However, when this

approach is not possible, we may consider an approach that tests the null.

� The sign test addresses the null hypothesis that the mean effect across all

studies is zero. It can be used when we know the direction (but not the

magnitude) of the effects, or when the studies are so different that it does

not make sense to combine effect sizes.

� Tests to combine p-values address the null hypothesis that the effect in all

studies is zero.
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CHAPTER 37

Further Methods for Dichotomous Data

Introduction
Mantel-Haenszel method
One-Step (Peto) formula for odds ratio

INTRODUCTION

In this chapter we present two methods, the Mantel-Haenszel method and the one-

step method (also known as the Peto method) for performing a meta-analysis on

odds ratios. For both methods we assume the data from each study are presented in

the form of a 2� 2 table with cells labeled as in Table 37.1.

MANTEL-HAENSZEL METHOD

Widely familiar to epidemiologists, although perhaps less familiar to others, the

Mantel-Haenszel (MH) method is unusual in being a weighted average of odds

ratios rather than of log odds ratios. If we use Yi to denote the odds ratio in study i,

then Yi is computed as

Yi 5
AiDi

BiCi

: ð37:1Þ

Table 37.1 Nomenclature for 2� 2 table of events by treatment.

Events Non-Events

Treated A B n1

Control C D n2
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In the Mantel-Haenszel method, the weight assigned to each study is

Wi 5
BiCi

ni

; ð37:2Þ

where

ni 5 Ai þ Bi þ Ci þ Di; ð37:3Þ

and the weighted mean is then computed as

ORMH 5

Xk

i 5 1

WiYi

Xk

i 5 1

Wi

: ð37:4Þ

This is the sum of the products (effect size multiplied by weight) divided by the sum

of the weights. This formula is identical to the one for inverse-variance, but the

weights (W) have been defined differently and the effect size (Y) is in raw units

rather than log units.

While the odds ratio itself is computed in raw units, the variance is computed in

log units. Therefore we need to transform the odds ratio into log units to compute

the Z-score and confidence intervals. The natural log of the MH odds ratio is simply

lnORMH 5 lnðORMHÞ: ð37:5Þ

Recall that in the inverse variance formula the variance of the summary effect was

defined as the reciprocal of the sum of the weights. This is not the case here. Rather,

the MH approach calls for us to accumulate separate values, which will be summed

across studies and then used to compute the variance of the summary effect.

For each study (i),

Ri 5
AiDi

ni

; ð37:6Þ

Si 5
BiCi

ni

; ð37:7Þ

Ei 5
AiþDið ÞAiDi

n2
i

; ð37:8Þ

Fi 5
ðAi þ DiÞBiCi

n2
i

; ð37:9Þ

Gi 5
ðBi þ CiÞAiDi

n2
i

; ð37:10Þ

and

Hi 5
ðBi þ CiÞBiCi

n2
i

: ð37:11Þ
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Then the variance of the summary effect, in log units, is

VInORMH
5 0:5

Xk

i 5 1

Ei

Xk

i 5 1

Ri

 !2
þ

Xk

i 5 1

Fi þ
Xk

i 5 1

Gi

Xk

i 5 1

Ri �
Xk

i 5 1

Si

þ

Xk

i 5 1

Hi

Xk

i 5 1

Si

 !2

0
BBBBB@

1
CCCCCA ð37:12Þ

and

SElnORMH
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VlnORMH

p
: ð37:13Þ

The 95% confidence interval for the summary effect in log units would be computed

as

LLlnORMH
5 lnORMH � 1:96� SElnORMH

ð37:14Þ

and

ULlnORMH
5 lnORþ 1:96� SElnORMH

: ð37:15Þ

The Z-value is given by

Z 5
lnORMH

SElnORMH

: ð37:16Þ

For a one-tailed test the p-value is given by

p 5 1� Fð�jZjÞ; ð37:17Þ

where we choose ‘þ’ if the difference is in the expected direction and ‘�’ otherwise.

Or, for a two-tailed test by

p 5 2½1� ðFð�jZjÞÞ�: ð37:18Þ

Table 37.2 Mantel-Haenszel – odds ratio.

Cell Counts Compute Odds Ratio

A B C D N Odds Ratio Weight OR*WT

Saint 12 53 16 49 130 0.6934 6.5231 4.5231
Kelly 8 32 10 30 80 0.7500 4.0000 3.0000
Pilbeam 14 66 19 61 160 0.6810 7.8375 5.3375
Lane 25 375 80 320 800 0.2667 37.5000 10.0000
Wright 8 32 11 29 80 0.6591 4.4000 2.9000
Day 16 49 18 47 130 0.8526 6.7846 5.7846

Sum 67.0452 31.5452
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We present a worked example for Dataset 2, which was originally presented in

Chapter 18 and served as an example for the inverse-variance method.

From the results in Table 37.2, the Mantel-Haenszel summary odds ratio is

computed as

ORMH 5
31:5452

67:0452
5 0:4705;

and the log odds ratio is

lnORMH 5 ln ð0:4705Þ5�0:7539:

The confidence interval for the summary effect is calculated in log units as follows

(see Table 37.3).

For the first study (Saint), for example,

R 5
ð12Þð49Þ

130
5 4:5231;

S 5
ð53Þð16Þ

130
5 6:5231;

E 5
ð12þ 49Þð12Þð49Þ

1302
5 2:1224;

F 5
ð12þ 49Þð53Þð16Þ

1302
5 3:0608;

G 5
ð53þ 16Þð12Þð49Þ

1302
5 2:4007;

and

H 5
ð53þ 16Þð53Þð16Þ

1302
5 3:4622:

Table 37.3 Mantel-Haenszel – variance of summary effect.

Cell Counts Compute Variance of Combined effect

A B C D N R S E F G H

Saint 12 53 16 49 130 4.5231 6.5231 2.1224 3.0608 2.4007 3.4622
Kelly 8 32 10 30 80 3.0000 4.0000 1.4250 1.9000 1.5750 2.1000
Pilbeam 14 66 19 61 160 5.3375 7.8375 2.5020 3.6738 2.8355 4.1637
Lane 25 375 80 320 800 10.0000 37.5000 4.3125 16.1719 5.6875 21.3281
Wright 8 32 11 29 80 2.9000 4.4000 1.3413 2.0350 1.5588 2.3650
Day 16 49 18 47 130 5.7846 6.7846 2.8033 3.2879 2.9813 3.4967

Sum 31.5452 67.0452 14.5064 30.1295 17.0388 36.9157

334 Further Methods



The variance of the log odds ratio is given by

VlnORMH
5 0:5� 14:5064

31:54522
þ 30:1295þ 17:0388

31:5452� 67:0452
þ 36:9157

67:04522

� �
5 0:0225;

so

SElnORMH
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0225
p

5 0:1502;

LLlnORMH
5 �0:7539� 1:96� 0:1502 5�1:0482;

ULlnORMH
5 �0:7539þ 1:96� 0:1502 5�0:45951;

and

Z 5
�0:7539

0:1502
5�5:0211:

For a one-tailed test p is given by

p 5 1� Fðþ5:0211Þ5 0:00000026 ;

which, in Excel is 5(1-(NORMSDIST(ABS(Z)))). Or, for a two-tailed test, p is

given by

p 5 2½1� ðFðj�5:0211jÞÞ�5 0:00000051

which, in Excel is 5(1-(NORMSDIST(ABS(Z))))*2.

Finally, we would convert the values back to raw units for display, using

ORMH 5 0:4705;

LLORMH
5 expð�1:0482Þ5 0:3506 ;

and

ULORMH
5 expð0:4596Þ5 0:6315:

The Z-value and p-value are the same as for the log values.

The Mantel-Haenszel method was developed for combining odds ratios across

2� 2 tables. It has since been extended by others to combine risk ratios or risk

differences across 2� 2 tables. Similar formulas are available for these, although

we do not present them since they provide little insight into the pooling mechan-

ism and they can readily be implemented in meta-analysis software (see

Chapter 44).

The Mantel-Haenszel method is based on the fixed-effect model, where the weight

assigned to each study is based on that study alone and not on the variance across

studies.
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ONE-STEP (PETO) FORMULA FOR ODDS RATIO

The one-step method for computing the summary odds ratio works on the log odds

ratio scale, and is a variant of the basic inverse-variance approach. However, this

method uses a different formula than the one presented earlier for both the odds ratio

and its variance. The one-step method is sometimes called the Peto method.

The log odds ratio in study (i) is estimated using

Yi 5
Oi � Ei

Ii

; ð37:19Þ

where the observed count, Oi is given by

Oi 5 Ai; ð37:20Þ

and the expected count, Ei, is given by

Ei 5
ðAi þ BiÞ � Ai þ Cið Þ

ni

; ð37:21Þ

where

ni 5 Ai þ Bi þ Ci þ Di ; ð37:22Þ

and

Ii 5
ðAi þ BiÞ � ðCi þ DiÞ � ðAi þ CiÞ � ðBi þ DiÞ

n2
i � ðni � 1Þ : ð37:23Þ

The variance of the log odds ratio estimate for a single study is

VYi
5

1

Ii

; ð37:24Þ

where the weight given to the study is its inverse-variance given by

Wi 5
1

VYi

: ð37:25Þ

Note that the weight is just Ii. The meta-analysis is given by the weighted average of

the log odds ratio estimates

lnORonestep 5

Xk

i 5 1

WiYi

Xk

i 5 1

Wi

ð37:26Þ
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with variance given by

VlnORonestep
5

1Xk

i51

Wi

:
ð37:27Þ

An alternative way of writing these results is

lnORonestep 5

Xk

i 5 1

ðOi � EiÞ

Xk

i51

Ii

; ð37:28Þ

with variance given by

VlnORonestep
5

1Xk

i 5 1

Ii

: ð37:29Þ

The standard error (in log units) is

SElnORonestep
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VlnORonestep

p
: ð37:30Þ

The 95% confidence interval for the summary effect in log units would be computed

as follows.

LLlnORonestep
5 lnORonestep � 1:96� SElnORonestep ð37:31Þ

and

ULlnORonestep
5 lnORonestep þ 1:96� SElnORonestep : ð37:32Þ

The Z-value is given by

Z 5
lnORonestep

SElnORonestep

: ð37:33Þ

The p-value for a one-tailed test given by

p 5 1� Fð�jZjÞ; ð37:34Þ

where we choose ‘þ’ if the difference is in the expected direction and ‘–’ otherwise.

Or, for a two-tailed test as

p 5 2½1� ðFðjZjÞÞ�: ð37:35Þ

In Excel, the two-tailed p-value is given by 5(1-(NORMSDIST(ABS(Z))))*2.

In Table 37.4 we apply these formulas to Dataset 2 (see Table 14.4). Then, using

sums computed in Table 37.4, we compute
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lnORonestep 5
�35:5000

48:4827
5�0:7322;

VlnORonestep
5

1

48:4827
5 0:0206;

SElnORonestep
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0206
p

5 0:1436;

LLlnORonestep
5�0:7322� 1:96� 0:1436 5�1:0137;

ULlnORonestep
5�0:7322þ 1:96� 0:1436 5�0:4507;

Z 5
�0:7322

0:1436
5�5:098;

p 5 1� Fð�5:098Þ5 0:00000017;

and
p 5 2½1� ðFðj�5:098jÞÞ�5 0:00000034:

Finally, we would convert the values back to raw units for display, using

ORonestep 5 expð�0:7322Þ5 0:481;

LLORonestep
5 expð�1:0137Þ5 0:363;

and
ULORonestep

5 expð�0:4507Þ5 0:637;

In the one-step approach, like the basic approach, all analyses are carried out on the

log of the odds ratio. We compute a weighted mean of the log values, and then

exponentiate this value to report the summary effect.

Table 37.4 One-step – odds ratio and variance.

A B C D N O E O�E I Y W WY

Saint 12 53 16 49 130 12 14 �2 5.5349 �0.3613 5.5349 �2.0000
Kelly 8 32 10 30 80 8 9 �1 3.5316 �0.2832 3.5316 �1.0000
Pilbeam 14 66 19 61 160 14 16.5 �2.5 6.5896 �0.3794 6.5896 �2.5000
Lane 25 375 80 320 800 25 52.5 �27.5 22.8332 �1.2044 22.8332 �27.5000
Wright 8 32 11 29 80 8 9.5 �1.5 3.6677 �0.4090 3.6677 �1.5000
Day 16 49 18 47 130 16 17 �1 6.3256 �0.1581 6.3256 �1.0000

Sum 48.4827 �35.5000

338 Further Methods



When one or more of the cells in the 2 � 2 table is empty (that is, a value of zero),

the basic inverse-variance formula cannot work with zero, and the typical approach

is to add the value 0.5 (or some other value) to all four cells. However, both the

Mantel-Haenszel method and the one-step approach are able to work with a value of

zero, and so no adjustment is needed.

The one-step approach follows the same logic as the basic scheme, in that it uses

inverse-variance weights at all points in the analysis, and differs from the basic

approach only in that it uses a slightly different way of computing the log odds ratio

and its variance. As such, the one-step approach can be extended to the random-

effects model. In practice, though, this is rarely done.

SUMMARY POINTS

� The Mantel-Haenszel method for combining odds ratios is an alternative to

the fixed-effect inverse variance method.

� The one-step (Peto) method for combining odds ratios is an inverse-variance

method, but uses an alternate approach to computing the odds ratio and

variance in each study. This method offers some advantages when some

studies have empty cells.
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CHAPTER 38

Psychometric Meta-Analysis

Introduction
The attenuating effects of artifacts
Meta-analysis methods
Example of psychometric meta-analysis
Comparison of artifact correction with meta-regression
Sources of information about artifact values
How heterogeneity is assessed
Reporting in psychometric meta-analysis
Concluding remarks

INTRODUCTION

Most meta-analyses aim to summarize the results obtained in studies that were

carried out with an implicit assumption that those results are the best available

estimates of effect. However, any study has methodological flaws that affect its

results. If we were able to correct estimates for these flaws, it would be preferable to

perform a meta-analysis of these corrected results. Then we can address what the

study results would have been if all of the studies had been free of methodological

imperfections (including finite sample size) and to estimate parameters describing

the effects in these methodologically perfect studies.

Unfortunately it is typically difficult, if not impossible, to know the specific impact

of these methodological flaws. A growing literature addresses attempts to determine

the likely biases using theoretical considerations or information from other studies

and other meta-analyses. One approach to meta-analysis has focused since its incep-

tion almost exclusively on developing ways to adjust estimates of effect for metho-

dological limitations of the studies. This is the field of psychometric meta-analysis

(also called validity generalization or Hunter-Schmidt meta-analysis). This field has

also adopted a somewhat different (though closely related) set of methods for

combining results in meta-analysis than those that have been discussed previously.

This chapter provides an overview of two issues. One is the approach to adjusting
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estimates of effect (known as artifact correction), which will be of interest to nearly

anyone thinking about using meta-analysis. The other is the methods that are com-

monly used to combine results in the field of psychometric meta-analysis, which will

be of interest primarily to researchers who use correlations as their effect size measure.

Psychometric meta-analysis

Methodological flaws in research studies affect study results in ways that might be

thought of as artifacts of the study design. Much of the work on psychometric meta-

analysis has focused on the case of studies that use continuous outcome measures and

use effect size measures involving standardization (such as correlation coefficients or

standardized mean differences). Since the measuring instruments are subject to mea-

surement error (imperfect reliability), they produce effect size estimates that are made

smaller (attenuated) by this measurement error. If the samples in some studies are

selected in ways that do not contain the full range of variation on either independent or

dependent variables, effect size estimates are reduced (or attenuated) due to this

restriction of range. The dichotomization of variables that are inherently continuous

in order to form binary categories produces effect size estimates that are attenuated by

the reduction in variance that results from the (artificial) dichotomization. A more

complete list of methodological problems that can have an impact on observed effects

may be found in Hunter and Schmidt (2004). Psychometric meta-analysts rightly argue

that what researchers really would like to know about is the relationship between the

constructs (or variables) in a study that are not artifacts of study design. Therefore the

answers to scientific questions are best provided by estimating the results that would

have been observed had each study been free of methodological imperfections. This is

what psychometric meta-analysis would call the true values.

Psychometric meta-analysis uses procedures based on psychometric principles (hence

the name psychometric meta-analysis) to make corrections for attenuation due to

measurement error and other artifacts at the level of the individual effect size estimate,

before these effects are synthesized across the set of studies in the meta-analysis.

Many methodological artifacts have the effect of attenuating relationships among

variables. Therefore, the average effect size corrected for the effects of artifacts

(such as measurement unreliability or range restriction) will generally be larger than

if the corrections were not made.

Our estimate of the variation in effects may also be different. The reason is that

the impact of artifacts on effect sizes varies from study to study, and this increases

the variability of the observed effect sizes. Consequently, the variation across

studies in the effects corrected for artifacts (the variation that is of interest in

psychometric meta-analyses) is typically less than that in the observed effects.

THE ATTENUATING EFFECTS OF ARTIFACTS

Psychometric meta-analyses usually represent the relationship between the

observed (unadjusted) effect size and the true (adjusted) effect size via their
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ratio. In accordance with psychometric terminology, however, they use the term

attenuated to refer to the observed effect, and the term unattenuated to refer to

the adjusted effect. The ratio of the attenuated to the unattenuated effect

describes the impact of the artifact on the effect size, and is called an artifact

multiplier because the magnitude of the observed (attenuated) effect size is equal

to the artifact multiplier times the unattenuated effect size. For example, if the

effect size is a correlation coefficient (as it typically is in psychometric meta-

analyses), and the artifact is measurement error (unreliability) in one of the two

variables, then the ratio a of the attenuated correlation � to the unattenuated

correlation �u

a¼ �

�u ð38:1Þ

is the square root of the reliability coefficient of Y. (The reliability coefficient is an

index used in psychometric theory and other areas to characterize the reproduci-

bility of measurements.) Although a discussion of measurement theory in general,

and reliability, in particular, are beyond the scope of this book, a sophisticated

discussion of reliability can be found in Lord and Novick (1968) and an introductory

discussion can be found in Crocker and Algina (1986). Other artifacts (such as

restriction of the range of measurement for one or other variable) lead to different

expressions for the artifact multiplier. Algebraic expressions for the artifact multi-

pliers come from psychometric or statistical theory (see Hunter and Schmidt, 2004).

While artifacts typically lead to attenuation (that is, 0 < a < 1), this need not be so

for all artifacts (e.g. in the case where the range of variables in the study population

is greater than that in the reference population of interest).

If several artifacts influence an effect size parameter, we can compute an artifact

multiplier for each. Then the combined effect of all of the artifacts can be expressed

by a combined artifact multiplier that is the product of all of the individual artifact

multipliers. This combined artifact multiplier can be used like any single artifact

multiplier. The object of psychometric meta-analysis is to describe the distribution

of the unattenuated effect size parameters (such as the �u) given estimates of the

observed (attenuated) effect size estimates (such as the r). It follows from (38.1) that

the unattenuated correlation can be estimated from the observed correlation and the

artifact multiplier as

ru¼ r

a
: ð38:2Þ

Because the artifact multipliers are taken to be constants, it follows that the variance

of ru (call this Vu
r ) is 1/a2 as large as the variance of r (call this Vr). That is,

Vu
r¼

Vr

a2
: ð38:3Þ

Having obtained estimates of unattenuated correlations and their variances,

we could implement any of the methods described in Parts 3 to 6. For instance,

we could perform a fixed-effect or a random-effects meta-analysis using basic
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inverse-variance weighted averages, we could assess heterogeneity using a

statistical test, or I2, or by computing T 2, and could perform subgroup analyses and

meta-regression to explore heterogeneity. The methods that are typically used in the

psychometric meta-analysis field are somewhat different, however. In particular,

� Raw correlations are used as the effect size index instead of Fisher’s Z-trans-

formed correlations.

� Sample sizes are used as weights instead of inverse variances (which makes little

difference for correlations, but which could yield very different results, were it

applied to binary data).

� A different method is used to estimate �2.

� Heterogeneity is examined and reported in a different way.

META-ANALYSIS METHODS

We will describe first the methods used to perform a meta-analysis of the observed

(attenuated) correlations, and then apply similar ideas to the unattenuated correla-

tions. At this point we add subscripts (i) to refer to the different studies, and use k to

denote the number of studies. The convention in psychometric meta-analysis is to use

the sample sizes as weights for computing the mean correlation. This yields the mean

r ¼

Xk

i¼1

niri

Xk

i¼1

ni

: ð38:4Þ

To estimate the between-studies variance (�2) of the underlying attenuated correla-

tion coefficients, we require a variance for the correlation from each study. We

could use the usual variance estimate in (6.1). However, the convention in psycho-

metric meta-analysis is to use the sample size weighted estimate of the mean effect

size parameter to compute the sampling error variance, namely

Vri
¼ 1� ðr Þ2½ �2

ni � 1
: ð38:5Þ

To compute the between-studies variance component of the observed (attenuated)

effect size parameters we first compute the sample-size-weighted variance of the

observed (attenuated) correlations

S2¼

Xk

i¼1

niðri � r Þ2

Xk

i¼1

ni

: ð38:6Þ
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Then the between-studies variance component of the observed (attenuated) effect

size parameters is computed as the difference between S2 and the sample-size-

weighted average of the sampling error variances, namely

T2¼ S2 �

Xk

i¼1

niVri

Xk

i¼1

ni

: ð38:7Þ

Note that the right hand side of this equation consists of two terms. The first term is a

weighted variance of the observed correlations (with the ith correlation weighted by

ni) and the second term is a weighted average of the sampling error variances using

the same weights. The between-studies variance estimate is the difference between

an observed (weighted) variance and the (weighted) average of the sampling error

variances. Thus the between-studies variance estimate can be seen as the observed

variance adjusting for the sampling error variance.

A meta-analysis of unattenuated (artifact-corrected) correlation estimates fol-

lows a similar procedure with rui replacing ri and with revised weights. Recall that

the artifact correction for the variance in each study is given by (38.3). The

analogous correction to the sample size is to adjust it from ni to ai
2ni.

The mean unattenuated correlation is therefore

ru¼

Xk

i¼1

nia
2
i ru

i

Xk

i¼1

nia
2
i

: ð38:8Þ

The weighted variance of the unattenuated correlations is

ðSu Þ2¼

Xk

i¼1

nia
2
i ðru

i � ru Þ2

Xk

i¼1

nia
2
i

: ð38:9Þ

Then the between-studies variance component of the unattenuated effect size

parameters (T u)2 is computed as the difference between (Su)2 and the sample-

size-weighted average of the sampling error variances of the unattenuated correla-

tions, namely

ðTu Þ2¼ðSu Þ2 �

Xk

i¼1

nia
2
i Vu

i

Xk

i¼1

nia
2
i

: ð38:10Þ
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EXAMPLE OF PSYCHOMETRIC META-ANALYSIS

We now present a hypothetical example to illustrate the methods of psychometric meta-

analysis. We will correct for only a single artifact, error of measurement (unreliability)

in the dependent variable. In actual applications of psychometric meta-analysis, correc-

tions for multiple artifacts (for example, error of measurement in both independent and

dependent variables, and restriction of range in one or both variables) might be used.

Suppose that six studies were conducted to assess the validity of a pre-hire work

sample test (independent variable) to predict the job performance (dependent vari-

able) of dental hygienists six months after hire. The first two studies were conducted

by a consortium of clinics run by schools of dentistry, and job performance was

measured using a standard, professionally developed rating scale. The third and

fourth studies were conducted in large multi-partner private dental practices, and

job performance was measured using a home-grown rating scale developed by a

group of the partners from the two practices. The fifth and sixth studies were done at

clinics run by a nonprofit organization where dentists volunteered to work for free two

weeks per year. Job performance was measured using a standardized work behavior

assessment scale designed by the nonprofit organization.

The sample sizes (n), the observed (attenuated) correlations (r), and the criterion

reliabilities are given in Table 38.1. We first perform a meta-analysis of the correlations

as they were observed (the attenuated correlations). The calculations are provided in

Table 38.2.

Table 38.2 Observed (attenuated) correlations.

Study ni ri ni ri r Vri
ni (ri�r) 2 niVri

University 1 130 0.24 31.20 0.252179 0.0068 0.019283 0.88365
University 2 90 0.11 9.90 0.252179 0.0099 1.819338 0.88671
Private 1 30 0.05 1.50 0.252179 0.0302 1.226290 0.90709
Private 2 25 0.17 4.25 0.252179 0.0365 0.168835 0.91339
Volunteer 1 50 0.38 19.00 0.252179 0.0179 0.816910 0.89475
Volunteer 2 65 0.50 32.50 0.252179 0.0137 3.991991 0.89056

Total 390 98.35 8.042647 5.37615

Table 38.1 Fictional data for psychometric meta-analysis.

Study n r Criterion reliability

University 1 130 0.24 0.75
University 2 90 0.11 0.75
Private 1 30 0.05 0.60
Private 2 25 0.17 0.60
Volunteer 1 50 0.38 0.90
Volunteer 2 65 0.50 0.90
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We use the first three columns in Table 38.2 to compute the sum of ni and the sum

of niri. Then, the mean correlation is computed as

r ¼

X6

i¼1

niri

X6

i¼1

ni

¼ 98:35

390
¼ 0:2518;

which is inserted into column 4 in the table. Then, we complete the remaining

columns in the table.

The variance of the correlation in study number i is

Vri
¼

1� 0:252182
� �2

ni � 1

and these values are listed in Table 38.2.

The between-studies variance is computed as follows:

S2 ¼ 8:0426

390
¼ 0:0206 and

T2 ¼ 0:0206� 5:3762

390
¼ 0:0069:

Calculations for the unattenuated correlations appear in Table 38.3. The artifact

multiplier for this particular example is the square root of the criterion reliability.

The mean unattenuated correlation is

ru ¼ 88:9048

301:5
¼ 0:2949 :

The between-studies variance is computed as

Suð Þ2 ¼ 6:6287

301:5
¼ 0:0212

Table 38.3 Unattenuated correlations.

Study ni ai ri
u ni ai

2ri
u Vri

u ni ai
2 ni ai

2(ri
u�r�u)2 ni ai

2vri
u

University 1 130 0.866 0.28 27.020 0.00906 97.500 0.030707 0.0068
University 2 90 0.866 0.13 8.574 0.01314 67.500 1.901896 0.0099
Private 1 30 0.775 0.06 1.162 0.05039 18.000 0.954894 0.0302
Private 2 25 0.775 0.22 3.292 0.06089 15.000 0.085290 0.0365
Volunteer 1 50 0.949 0.40 18.025 0.01988 45.000 0.502575 0.0179
Volunteer 2 65 0.949 0.53 30.832 0.01522 58.500 3.153359 0.0137

Total 390 88.905 301.500 6.628722 5.3762
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and

Tuð Þ2 ¼ 0:0220� 5:3762

301:5
¼ 0:0042:

The effect of the artifact of error of measurement in the criterion variable was to

decrease the estimate of the average correlation from about 0.295 to about 0.252 or

about 15%. In addition the artifact of error of measurement in the criterion variable

increased the estimated variance of the unattenuated correlations compared to

the observed (attenuated) correlations from about 0.0042 to about 0.0069 or about

64%. This example illustrates a common finding in psychometric meta-analyses:

artifacts tend to reduce the magnitude of effects and increase their apparent

variation in the sense that the unattenuated effect parameters are estimated to

have a larger mean and smaller between-studies variance than the observed effects.

Explained variance in psychometric meta-analyses

It is conventional in psychometric meta-analyses to consider S2 as the (estimated

total) variance of the observed effect estimates and (Tu)2 as the (estimated) variance of

the true effects remaining after the artifacts effects have been removed. Thus

S2 � ðTu Þ2

S2
¼ 1� ðT

u Þ2

S2
ð38:11Þ

is the proportion of variance in the observed (attenuated) effect estimates explained

by artifacts.

Note that this definition is in the same spirit as the index I2 in conventional meta-

analysis, but I2 focuses on unexplained, as opposed to explained variance. Thus

ðTu Þ2

S2
� 100% ð38:12Þ

estimates a quantity similar to I2 that reflects the percentage of the variance in the

observed correlations that is due to the variance in the unattenuated correlation

parameters.

In our example, the psychometric analysis would estimate the proportion of

explained variance as

0:02062� 0:0042

0:0206
¼ 0:7987;

so that 79.9% of the total variance in the observed (attenuated) effect size estimates

is explained by the artifacts of sampling error and measurement error in the criterion

variable.

COMPARISON OF ARTIFACT CORRECTION WITH META-REGRESSION

In conventional meta-analysis, if criterion unreliability was hypothesized to influ-

ence effect size, it would be treated as a covariate. After the core meta-analysis was
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run, criterion unreliability would be regressed on effect size, to test whether it could

explain some of the between-study variation in the (uncorrected) correlations. In

this example, we conducted a random-effects meta-analysis on the (uncorrected)

dental hygienist validity data. The overall mean effect was computed as 0.25, T2

was computed 0.012, and I2 was 44.481. We then performed a random-effects meta-

regression (method of moments), regressing criterion unreliability on effect size.

Results showed that the slope was significant with a p-value of 0.011. More to the

point, T2 was 0.00, meaning that all of the explainable variance was accounted for

by differences in criterion reliability.

SOURCES OF INFORMATION ABOUT ARTIFACT VALUES

The most appropriate method of adjusting for the effects of artifacts is to correct each

effect individually, using reliability and range restriction information that is provided

in the study from which the effect is extracted. In most cases, however, this informa-

tion is not available. This presents what is essentially a missing data problem. As in

other cases of missing data, a variety of imputation techniques can be used to estimate

the missing reliability and/or range restriction values. One technique that is recom-

mended by the developers of psychometric meta- analysis is to create artifact

distributions based on the information provided in the subset of studies that report

the relevant data. In this case, the meta-analysis is conducted on the uncorrected

effects and the average artifact value (e.g. reliability) from the artifact distribution is

used to correct the average effect, while the standard deviation of the artifact values is

used to correct the variance of the observed effects. The use of hypothetical distribu-

tions of artifacts in general, and in particular, the application of distributions created

for meta-analyses of employment test validities to quite different research questions,

has been criticized by many methodologists who are generally supportive of the

psychometric meta-analysis framework. An alternative, when information about

measurement reliability and range restriction is largely missing from the set of studies

in the analysis, is to use the mean observed effect as the estimate of the population

mean effect, and to remove the variance due to sampling error from the total observed

variance, to produce an estimate of true variance in effects. Psychometric meta-

analysis refers to this alternative as a bare-bones meta-analysis.

HOW HETEROGENEITY IS ASSESSED

When covariates are not hypothesized in advance of the meta-analysis

Psychometric meta-analyses do not usually use the chi-square test of homogeneity

to test whether the observed variance is greater than the amount that would be

expected due to sampling error. Instead, they have substituted the 75% decision

rule, which proposes that if 75% or more of the total (observed) variance is due to

artifacts, including sampling error, the researcher may conclude that, actually, all of
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the variance is artifactual, since there are several commonly operating artifacts for

which no corrections can be made (such as transcriptional and coding errors, which

are claimed to be ubiquitous), This rule was formulated for the original application

of psychometric meta-analysis, the assessment of the consistency of employment

test validities, and was tested through computer simulation of conditions typical of

employment testing research. Its performance in other research areas remains

unstudied, and it is not advisable to use this rule outside the area for which it was

developed. Many users of psychometric meta analysis have objected to the 75% rule

because it focuses on the percentage of true variance rather than on its magnitude,

and may cause substantial remaining true variance to be ignored.

When there is an a priori hypothesis that a covariate may explain heterogeneity

In the cases of a hypothesized discrete covariate, the procedure followed by

psychometric meta-analysis is to divide the studies into subgroups based on values

of the hypothesized covariate. For example, if the hypothesis that the correlations

will be higher for males than for females, studies of males will comprise one

subgroup, and studies of females will comprise a second subgroup. Subgroup

meta-analyses are conducted, and are declared to be different when the true

means in each subgroup are different from each other, and the confidence intervals

around each mean are largely non-overlapping.

For continuous covariates, the usual meta-regression procedures are followed,

using correlations that are individually corrected for artifacts, and the corrected

sampling error variances.

REPORTING IN PSYCHOMETRIC META-ANALYSIS

The findings of a psychometric meta-analysis focus on the value of three para-

meters: (1) the average percentage of the total (observed) variance of effects across

studies that is explained by statistical and measurement artifacts, including sam-

pling error; (2) the estimated mean true effect parameter; and (3) the estimated

standard deviation of true effects. In a psychometric meta-analysis this last value

represents the degree of dispersion across the true effects, that is, the degree of

dispersion remaining after sampling error variance, and variance due to other

artifacts, have been removed from the observed variance, It is used to form what

psychometric meta-analysis refers to as the credibility interval. The credibility

interval contains the distribution of true effects and is roughly analogous to

the prediction interval discussed in Chapter 17. Typically, a psychometric meta-

analysis results table presents the lower end of the 80 or 90% credibility interval,

which is the estimated value of the effect above which 80 or 90% of true effects are

expected to be found. The lower bound value of the credibility interval (because we

care about the minimum validity) and the width of the interval are considered to be

the most important results of the meta-analysis.
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CONCLUDING REMARKS

The purpose of this chapter has been to explain the basic tenets of psychometric

meta-analysis, and to explain how these differ from other methods of meta-analysis.

A key characteristic of psychometric meta-analyses is the correction of individual

study results for artifacts, so that we can estimate what the effect would be if there

were no methodological limitations. This would be a desirable aim in any meta-

analysis. Unfortunately methods are not established for many types of data, and

even among supporters of psychometric meta-analysis, there is some disagreement

about the specific operational procedures to be followed in making these correc-

tions. Another characteristic of psychometric meta-analyses is the emphasis on

credibility intervals rather than overall means. We have argued in Chapter 17 that

analogous prediction intervals should be considered routinely for all meta-analyses.

Other differences are technical in nature. These include the way weights are

assigned, the way between-studies variance is estimated, the use of correlation

coefficients rather than Fisher’s Z-transformed values, and the use of the average

versus the individual effect in calculating the sampling error variance. The effects of

these choices can be viewed entirely separately from other aspects of the proce-

dures, and have been extensively examined through simulations, which suggest that

the differences are likely to be trivial in many cases.

Finally, there are issues that remain the subject of disagreements among users of

psychometric meta-analysis. These include the degree to which the assumptions

needed to make the corrections are met in specific situations, the use of artifact

distributions, the imputation of specific values for these distributions, and the use of

the 75% rule to make decisions about the presence or absence of heterogeneity.

These practices may be consequences of psychometric meta-analysis origins in test

validity research, and may resolve themselves as relevant data accumulate from

other research domains.

SUMMARY POINTS

� Psychometric meta-analysis attempts to correct for bias in study findings by

adjusting for errors of measurement, restriction of range and other artifactual

influences on effect sizes.

� Making these corrections typically produces effects that are higher in magni-

tude, and less variable across the set of studies in the meta-analysis, than

would be the case if no corrections had been made.

� Psychometric meta-analysis emphasizes the distribution of true effects, rather

than the overall mean effect. The inclusion of an estimate of the distribution of

true effects should be adopted even by those who use conventional meta-

analytic techniques.
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CHAPTER 39

OVERVIEW

Several chapters in this section address basic issues in meta-analysis. Chapter 40

addresses the basic question of when it makes sense to perform a meta-analysis, and

Chapter 41 offers suggestions for how to report the results of a meta-analysis. The

two share the theme that there is no single best way to perform (or report) a meta-

analysis. Rather, there needs to be a match between the goals of a specific synthesis,

the kinds of studies included, the methods applied, and the conclusions reported.

Chapter 42 describes a procedure called cumulative meta-analysis, which is a

sequence of analyses performed with one study, then two, and so on, until all studies

have been entered. This can be used to see how the body of evidence has shifted

over time, or as a function of any moderator.

Chapter 43 is dedicated to criticisms of meta-analysis. There, we present a series

of questions often raised by critics. We argue that some of the criticisms represent

either a misunderstanding of the method, or poor applications of the method. Other

criticisms represent problems that cannot easily be resolved, but we try to place

these in context, by showing that these problems exist also in other kinds of reviews.
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CHAPTER 40

When Does it Make Sense to Perform
a Meta-Analysis?

Introduction
Are the studies similar enough to combine?
Can I combine studies with different designs?
How many studies are enough to carry out a meta-analysis?

INTRODUCTION

In the early days of meta-analysis (at least in its current incarnation) Robert

Rosenthal was asked if it makes sense to perform a meta-analysis, given that the

studies differ in various ways, and the analysis amounts to combining apples and

oranges. Rosenthal answered that combining apples and oranges makes sense if

your goal is to produce a fruit salad.

The goal of a meta-analysis is only rarely to synthesize data from a set of identical

studies. Almost invariably, the goal is to broaden the base of studies in some way,

expand the question, and study the pattern of answers. The question of whether it

makes sense to perform a meta-analysis, and the question of what kinds of studies to

include, must be asked and answered in the context of specific goals.

The ability to combine data from different studies to estimate the common effect

(or mean effect), continues to be an important function of meta-analysis. However,

it is not the only function. The goal of some syntheses will be to report the summary

effect, but the goal of other syntheses will be to assess the dispersion as well as the

mean effect, and the goal of others will be to focus on the dispersion exclusively.

For example, suppose that we are looking at the impact of a teaching intervention

on student performance. Does it make sense to include studies that measured verbal

skills and also studies that measured math skills? If our goal is to assess the impact

on performance in general, then the answer is Yes. If our goal is to assess the impact

on verbal skills alone, then the answer is No. Does it make sense to include studies
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that enrolled middle-school students and also studies that enrolled high-school

students? Again, the answer depends on the question being asked.

In some cases, however, the decisions are less clear cut. For example, does it

make sense to include both randomized trials and observational studies in the same

analysis? What about quasi-experimental studies? Is it acceptable to include studies

that used independent groups and also studies that used matched designs? The

answers to these and other questions will need to be decided in the context of the

research question being addressed. Our goal here is to outline the kinds of issues that

may arise and provide a context for making these kinds of decisions.

ARE THE STUDIES SIMILAR ENOUGH TO COMBINE?

From a statistical perspective, there is no restriction on the similarity of studies

based on the types of participants, interventions, or exposures. However, for the

analysis to be meaningful, we need to pay careful consideration to the diversity of

studies in these respects. For example, the research question might be Does Drug A

reduce the risk of heart attack as compared with a placebo; when used in a

population of males, age 40–60 years, with no prior history of heart attack, and a

cholesterol level of 250–300 on initial screening; where the dose was between 10–

15 mg per day; in studies that followed patients for at least a year, with a drop-out

rate no higher than five percent, where the randomization and blinding met specific

criteria; and where patients were under the care of a primary care physicians for

the duration of the study? In this case, the criteria for including studies in the

analysis would be very narrow, and the goal of the analysis would be to yield a more

precise estimate (and more powerful test) of the effect than would be possible with

any single study. This kind of meta-analysis might be planned by a pharmaceutical

company as part of the approval process, and this approach is entirely legitimate.

In most meta-analyses, however, the inclusion criteria will be broader than this. It is

an important feature of a meta-analysis that it may (and usually must) address a

broader question than those addressed by the primary studies it includes. Thus a

certain amount of diversity among the studies is not only inevitable but also desirable.

A good meta-analysis will anticipate this diversity and will interpret the findings with

attention to the dispersion of results across studies. To modify the prior example by

relaxing some of the criteria, a pragmatic review of the effects of Drug A versus

placebo on the risk of heart attack might include both sexes, adults of any age with no

prior history of heart attack, any cholesterol level; any dose of drug; in studies that

followed patients for at least a year, with a drop-out rate no higher than twenty

percent, where the randomization and blinding met specific criteria. The diversity of

studies meeting these broader criteria may lead to heterogeneous results, and this

heterogeneity needs to be recognized in the analysis and interpretation.

One approach to diversity is to apply the random-effects model and then address

the diversity by reporting the expected range of true effects over the populations and

interventions sampled. This could take the form of a prediction interval as explained
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in Chapter 17. This is appropriate if the effects fall over a small range, so that the

substantive implications of the finding are the same across the range.

With sufficient data, we can also explore the diversity across studies. For example,

we could investigate how the effect of a drug (as compared with a placebo) depends

on the sex of a patient. Assume that these studies reported outcomes for males and

females separately. We now have the ability to compute a summary effect in each of

these subgroups and to determine whether (and how) the effect is related to sex. If the

effect is similar in both groups, then we can report that the effect is robust, something

that was not possible with the more narrow criteria. If the effect varies (say, the drug is

effective for males but not for females) then the meta-analysis may have yielded

important information that, again, was not possible when all studies adhered to the

more narrow criteria. Note, however, that for many meta-analyses there is insufficient

power to do this reliably. There may also be problems of confounding.

This basic approach, that we can define the inclusion criteria narrowly and focus

on the summary effect, or define the inclusion criteria more broadly and explore the

dispersion, holds true for any meta-analysis. This idea can play itself out in various

ways, and we explore some of them here.

CAN I COMBINE STUDIES WITH DIFFERENT DESIGNS?

The appropriate types of study to include in a meta-analysis depend primarily on the

type of question being addressed. For example, meta-analyses to evaluate the effect

of an intervention will tend to seek randomized trials, in which interventions are

assigned in an experimental fashion so that there are no important differences

between those receiving and not receiving the intervention of interest. Meta-

analyses to investigate the cause of a rare disease will tend to seek case-control

studies, in which the past exposures of a collection of people with the disease are

compared with those of a collection of people without the disease. Meta-analyses to

examine the prevalence of a condition or a belief will tend to seek cross-sectional

studies or surveys, in which a single group is examined and no within-study

comparisons are made. And so on. Nevertheless, for any particular question there

are typically several types of study that could yield a meaningful answer. A frequent

question is whether studies with different designs can be combined in a meta-

analysis.

Randomized trials versus observational studies

Some have argued that systematic reviews on the effects of interventions should be

limited to randomized controlled trials, since these are protected from internal bias

by design, and should exclude observational studies, since the effect sizes in these

are almost invariably affected by confounders (and the confounders may vary from

one study to the next). In our opinion, this distinction is somewhat arbitrary.

It suggests that we would be better off with a set of poor quality randomized trials
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than with a set of high-quality observational studies (and leaves open the question of

quasi-experimental studies). The key distinction should not be the design of the

studies but the extent to which the studies are able to yield an unbiased estimate of

the effect size in question.

For example, suppose we wish to evaluate the effects of going to a support group to

give up smoking. We might locate five studies in which smokers were recruited and

then randomly assigned to either of two conditions (invitation to a support group, or a

control intervention). Because the trials use random assignment, differences between

groups are attributed to differences in the effects of the interventions. If we include

these trials in a meta-analysis, we are able to obtain a more precise estimate of the

effect than we could from any single trial, and this effect can be attributed to the

treatment. However, since trials cannot impose an intervention on people, the effect is

of being invited to the support group rather than, necessarily, of attending the support

group. Furthermore, the types of smokers who volunteer to be randomized into a trial

may not be the types of smokers who might volunteer to join a support group.

Alternatively, suppose that we locate five studies that compared the outcomes of

smokers who had voluntarily joined a support group with others who had not.

Because these studies are observational, any differences allow us to draw conclu-

sions about what proportions of people are likely to be smoking after joining a

support group or not joining a support group, but do not allow us to attribute these

differences to the treatment itself. For instance, those who enrolled for treatment are

likely to have been more motivated to stop smoking. If we include these observa-

tional studies in a meta-analysis we are able to obtain a more precise estimate of the

difference than we could from any single study, but the interpretation of this

difference is subject to the same limitations as that of the primary studies.

Does it make sense to include both these randomized trials and these observa-

tional studies in the same meta-analysis? The two kinds of studies are asking

different questions. The randomized trial asks if there is a relationship between

treatment and outcome when we control for all other factors, while the observa-

tional study asks if there is a relationship when we do not control for these factors.

Furthermore, the treatment is different, in that the randomized trial evaluates the

effect of the invitation, and the observational study collects information based on

actual participation in the support group.

It would probably not make sense to compute a summary value across both kinds

of studies. The meta-analyst should first decide which question is of greater interest.

Unfortunately neither would seem to address the fundamental question of whether

participating in the support group increases the likelihood of stopping smoking. As

is often the case, the researcher must decide between asking the sub-optimal

question (about invitations) with minimal bias (through randomization) or the

right question (about participation) with likely bias (using observational studies).

Most would argue that randomized trials do ask highly relevant questions, allowing

important conclusions to be drawn about causality even if they do not fully reflect

the way intervention would be applied on a day to day basis. Thus the majority of
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meta-analyses of interventions are restricted to randomized trials, at least in health

care, where randomized trials have long been the established method of evaluation.

Of course, some important effects of interventions, such as long-term or rare out-

comes (especially harms) often cannot be studied in randomized trials, so may need

to be addressed using observational studies. We would generally recommend that

randomized trials and observational studies be analyzed separately, though they

might be put together if they do not disagree with each other and are believed to

address a common question.

Studies that used independent groups, paired groups, clustered groups

Suppose that some of the studies compared means for treatment versus control using

two independent groups, others compared means using paired groups and others

used cluster-randomized trials. There is no technical problem with combining data

from the three kinds of studies, but we need to assume that the studies are

functionally similar in all other important respects. On the one hand, studies that

used different designs may differ from each other in substantive ways as well. On

the other hand, these differences may be no more important than the difference

between (say) studies that enrolled subjects in cities and others that enrolled

subjects in rural areas. If we are looking at the impact of a vaccination, then the

biological function is probably the same in all three kinds of studies. If we are

looking at the impact of an educational intervention, then we would probably want

to test this assumption rather than take it on faith.

Can I combine studies that report results in different ways?

Meta-analysts frequently have to deal with results reported in different ways.

Suppose we are looking at ways to increase the yield of grain, and are interested

in whether a high dose of fertilizer works better than the standard dose. We might

find studies that measure the impact of dose by randomizing different plots to

receive one of the two doses, but which measure the outcome in different ways.

Some studies might measure the average growth rate for the plants while others

measure the yield after a certain number of weeks (and the timings might vary

across studies). Some studies might measure the proportion of plants achieving a

specific growth rate while others measure the time from application to production of

a certain volume of grain. We might find further studies that apply a range of doses

and examine the correlation between the dose and, for example, yield.

Even within studies investigating the same outcome, results can be reported in

different ways. There are two types of variation here. First, different approaches to

analysis could be used. For example, two studies might focus on the proportion of

plants that fail under each dose of fertilizer, but one reports this as a ratio while

another reports this as a difference in proportions. Second, even the same analysis

can be reported using different statistics. For example, if several studies compare
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the mean yields between the two doses, some may report means with standard

deviations, others means with a p-value, others differences in means with confi-

dence intervals, and others F statistics from analysis of variance.

To what extent can all of these variations be combined in a meta-analysis? We

address here only the statistical considerations, and assume that there is sound

rationale for combining the different outcome measures in the analysis. Note that

we have described binary outcomes (proportion of failing plants), continuous out-

comes using different measurement scales (growth rate, yield), survival outcomes

(time to fruit) and correlational data (dose-yield). The list of possibilities is longer,

and we do not attempt a comprehensive summary of all options.

When studies are addressing the same outcome, measured in the same way, using

the same approach to analysis, but presenting results in different ways, then the only

obstacles to meta-analysis are practical. If sufficient information is available to

estimate the effect size of interest, then a meta-analysis is possible. For instance,

means with standard deviations, means with a p-value, and differences in means

with a confidence interval can all be used to estimate the difference in mean yield

(providing, in the first two situations, that the sample sizes are known). These three

also allow calculation of a standardized difference in means, as does a suitable F

statistic in combination with sample size. Detailed discussions of such conversions

are provided in Borenstein et al. (2009).

When studies are addressing the same outcome, measured in the same way, but

using different approaches to analysis, then the possibility of a meta-analysis

depends on both statistical and practical considerations. One important point is

that all studies in a meta-analysis must use essentially the same index of treatment

effect. For example, we cannot combine a risk difference with a risk ratio.

Rather, we would need to use the summary data to compute the same index for

all studies.

There are some indices that are similar, if not exactly the same, and judgments are

required as to whether it is acceptable to combine them. One example is odds ratios

and risk ratios. When the event is rare, then these are approximately equal and can

readily be combined. As the event gets more common the two diverge and should

not be combined. Other indices that are similar to risk ratios are hazard ratios and

rate ratios. Some people decide these are similar enough to combine; others do not.

The judgment of the meta-analyst in the context of the aims of the meta-analysis

will be required to make such decisions on a case by case basis.

When studies are addressing the same outcome measured in different ways, or

different outcomes altogether, then the suitability of a meta-analysis depends

mainly on substantive considerations. The researcher will have to decide whether

a combined analysis would have a meaningful interpretation. If so, then the above

statistical and practical considerations apply. A further consideration is how differ-

ent scales used for different outcomes are to be dealt with. The standard approach

for continuous outcome measures is to analyze each study as a standardized mean

difference, so that all studies share a common metric.
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There is a useful class of indices that are, perhaps surprisingly, combinable under

some simple transformations. In particular, formulas are available to convert

standardized mean differences, odds ratios and correlations to a common metric

(see Chapter 7). These kinds of conversions require some assumptions about the

underlying nature of the data, and violations of these assumptions can have an

impact on the validity of the process. Also, we must remember that studies which

used dichotomous data may be different in some substantive ways than studies

which used continuous data, and studies measuring correlations may be different

from those that compared two groups. As before, these are questions of degree

rather than of qualitative differences among the studies.

HOW MANY STUDIES ARE ENOUGH TO CARRY OUT A META-ANALYSIS?

If we are working with a fixed-effect model, then it makes sense to perform a meta-

analysis as soon as we have two studies, since a summary based on two or more

studies yields a more precise estimate of the true effect than either study alone.

Importantly, we are not concerned with dispersion in the observed effects because

this is assumed to reflect nothing more than sampling error. There might be a

concern that by reporting a summary effect we are implying a level of certainty

that is not warranted. In fact, though, the summary effect is qualified by a con-

fidence interval that describes the uncertainty of the estimate. Additionally,

research shows that if we fail to provide this information researchers will impose

their own synthesis on the data, which will invariably be less accurate and more

idiosyncratic than the value than we compute using known formulas.

In most cases however, we should be working with the random-effects model,

where the dispersion in effects is assumed to be real (at least in part). Unlike the

fixed-effect analysis, where the estimate of the error is based on sampling theory

(and therefore reliable), in a random-effects analysis, our estimate of the error may

itself be unreliable. Specifically, when based on a small number of studies, the

estimate of the between-studies variance (T2), may be substantially in error. The

standard error of the summary effect is based (in part) on this value, and therefore, if

we present a summary effect with confidence interval, not only is the point estimate

likely to be wrong but the confidence interval may provide a false sense of

assurance.

A separate problem is that in a random-effects analysis, our understanding of the

dispersion affects not only our estimate of the summary effect but also the thrust of

the analysis. In other words, if the effect is consistent across studies we would report

that the effect is robust. By contrast, if the effect varies substantially from study to

study we would want to consider the impact of the dispersion. The problem is that

when we have only a few studies to work with, we may not know what the

dispersion actually looks like.

This suggests that if the number of studies is small enough it might be better not to

summarize them statistically. However many statisticians would argue that, when

Chapter 40: When Does it Make Sense to Perform a Meta-Analysis? 363



faced with a series of studies, people have an almost irresistible tendency to draw

some summary conclusions from them. Experience has shown that seemingly

intuitive ad hoc summaries (such as vote counting, Chapter 28) are also often highly

misleading. This suggests that a statistical summary with known, but perhaps poor,

properties (such as high uncertainty) may be superior to inviting an ad hoc summary

with unknown properties.

In sum, when the number of studies is small, there are no really good options. As a

starting point we would suggest reporting the usual statistics and then explaining the

limitations as clearly as possible. This helps preclude the kinds of ad hoc analyses

mentioned in the previous paragraph, and is an accurate representation of what we

can do with limited data.

SUMMARY POINTS

� The question of whether or not it makes sense to perform a meta-analysis is a

question of matching the synthesis to the research question.

� If our goal is to report a summary effect, then the populations and interven-

tions (and other variables) in the studies should match those in our target

population. If our goal is to report on the dispersion of effects as a function of a

covariate, then the synthesis must include the relevant studies and the analysis

should focus on the differences in effects.

� Generally, we need to be aware of substantive differences among studies, but

technical differences can be addressed in the analysis.

� A potentially serious problem exists when the synthesis is based on a small

number of studies. Without sufficient numbers of studies we will have a

problem estimating the between-studies variance, which has important impli-

cations for many aspects of the analysis.

Further Reading

Ioannidis, J.P.A., Patsopoulos, N.A., Rothstein, H.R. (2008). Reasons or excuses for avoiding

meta-analysis in forest plots. BMJ 336: 1413–1415.
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CHAPTER 41

Reporting the Results of a Meta-Analysis

Introduction
The computational model
Forest plots
Sensitivity analysis

INTRODUCTION

Most of the issues that one would address when reporting the results of a meta-

analysis are similar to those for reporting the results of a primary study. There are

some unique issues as well, and we address those here.

As we have throughout this volume, we deal here only with issues related to the

meta-analysis, and not to the full systematic review. For a broader perspective,

especially for reviews in medicine, see the Cochrane Handbook for Systematic

Reviews of Interventions (Higgins and Green, 2008) and consider using some

published Cochrane reviews as models for the full report.

Are the effects consistent?

A recurring theme in this volume has been that the goal of a meta-analysis is to

synthesize the data, which is not necessarily the same as computing a single

summary effect. Similarly, the issues discussed in the report should match those

that are important to the synthesis.

� If the effect sizes are consistent, then the focus of the report is likely to be on the

summary effect, and the fact that the effect size is robust, in that it does not vary

across the range of studies included in the analysis.

� If the effect sizes vary modestly from study to study we may still report the

summary effect size, but will want to pay attention also to the dispersion in

effects. Usually, when we talk about whether or not the effects vary we are

referring to substantive variation, so it would be helpful to report the range across
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which the true effects vary. If there are sufficient studies in the analysis, we will

be able to estimate this range with reasonable precision. If this is not possible, we

should acknowledge this limitation. Similarly, it would be important to report I2,

the proportion of total variance attributed to variance in true effects. This helps to

place the observed dispersion in context.

� If the effect sizes vary substantially, the report might focus on the variance, with

the summary effect being of less (or even no) importance.

In all cases we need to be careful about the meaning of dispersion. We need to

distinguish between the case where the effects are shown to be homogeneous (on the

one hand) and the case where we simply fail to reject the hypothesis of homogeneity

(on the other). Also, one measure of heterogeneity (I2) tells us what proportion of

the observed dispersion reflects differences in the true effect while another T2 (or T)

reflects the amount of heterogeneity on an absolute scale. While these measures

tend to move in tandem, it is important to recognize that they are addressing two

completely different aspects of heterogeneity, and it is important to use each

appropriately in the report (see Chapter 17 on prediction intervals).

THE COMPUTATIONAL MODEL

A report should state the computational model used in the analysis and explain why

this model was selected. A common mistake is to use the fixed-effect model on the

basis that there is no evidence of heterogeneity. As explained in Chapter 13, the

decision to use one model or the other should depend on the nature of the studies,

and not on the significance of this test.

FOREST PLOTS

A recurring theme in this volume is the importance of interpreting statistics in

context, and the forest plot helps to provide that context. The plot, as suggested by

its appellation, allows the researcher to see both the forest and the trees (in the UK

this would be the wood and the trees). We have used forest plots throughout this

volume to illustrate various conceptual issues, precisely because the forest plot is an

excellent vehicle for illustrating these issues. It can, and should, serve the same

purpose in a report of a meta-analysis.

In the forest plot each study as well as the summary effect is depicted as a point

estimate bounded by its confidence interval. It shows if the overall effect is based

on many studies or a few, on studies that are precise or imprecise; whether the

effects for all studies tend to line up, or whether they vary substantially from one

study to the next. The plot puts a face on the statistics, helping to ensure that they

will be interpreted properly, and highlighting anomalies, such as outliers, that

require attention. The forest plot is a compelling piece of information and easy to

understand, even for people who do not work with meta-analysis on a regular basis.
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There are several variants of the forest plot that appear in the literature. Our goal

here is to sensitize the reader to some of these variants, and point out the advantages

and disadvantages of each.

Consider Figures 41.1 and 41.2, which represent the same set of studies. In both,

the study is represented by a point which is bounded by the confidence interval for

the effect size in that study. In Figure 41.1 the point is a vertical line, while in

Figure 41.2 the point is a box, proportional (in area) to that study’s weight in the

analysis.
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Figure 41.1 Forest plot using lines to represent the effect size.
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Figure 41.2 Forest plot using boxes to represent the effect size and relative weight.
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Both plots use confidence intervals to track the precision, with a narrower interval

reflecting better precision. What distinguishes between the two versions is the

mechanism used to reflect the study’s weight in the analysis, and the second version

offers two advantages.

First, the boxes provide an important visual cue. In Figure 41.1 the only cue to the

study weight is the width of the confidence interval, which requires careful attention

and also is inversely proportional to the study weight. By contrast, in Figure 41.2 the

studies with more weight are assigned more ink in the plot. The eye is naturally

drawn to these studies, and we quickly get a sense of the relative impact of the

different studies. In this example it is immediately apparent that the studies by

Donat and by Young are dominant factors in the summary effect.

Second, the confidence interval (more precisely, the inverse of the squared

standard error) is directly related to the weight only under the fixed-effect model.

Under the random-effects model, the study weight is based also on the between-

studies variance and may bear little relationship to the confidence interval.

The label forest plot also appears in the literature as Forrest plot. A paper in BMJ

by Lewis and Clarke (2001) explains that this (incorrect) usage stems from a

comment made by Richard Peto who, as a joke, attributed the plot’s invention to

breast cancer researcher Pat Forrest.

SENSITIVITY ANALYSIS

The issues addressed by a sensitivity analysis for a systematic review are similar to

those that might be addressed by a sensitivity analysis for a primary study. That is, the

focus is on the extent to which the results are (or are not) robust to assumptions and

decisions that were made when carrying out the synthesis. The kinds of issues that need

to be included in a sensitivity analysis will vary from one synthesis to the next. Our goal

here is not to describe all of the possible sensitivity analyses that might be done in a

meta-analysis, but to outline the kinds of issues that one might want to consider.

One kind of sensitivity analysis is concerned with the impact of decisions that lead

to different data being used in the analysis. A common example of sensitivity analysis

is to ask how results might have changed if different study inclusion rules had been

used. This could be asked about studies classified on the basis of a priori criteria (for

example, how would results have differed if we had included only randomized

experiments instead of also including well designed quasi-experiments). It could

also be asked about studies identified as outliers (studies whose effects differ very

substantially from the others). Here the question is whether the conclusions reached

might differ substantially if a single study or a few studies were omitted.

Another kind of sensitivity analysis is concerned with the impact of the statistical

methods used on the conclusions drawn from the analysis. For example one might ask

whether the conclusions would have been different if a different effect size measure

had been used (e.g. a risk ratio versus an odds ratio or an effect size using covariate

adjusted means versus raw means). Alternatively, one might ask whether the
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conclusions would be the same if fixed-effect versus random-effects methods had been

used. We might also ask whether conclusions would be different if the analysis had

adjusted for the effects of unreliability or restriction of range within individual studies.

Yet another kind of sensitivity analysis is concerned with how we addressed

missing data. One situation is missing data on study characteristics that might be

used formally (as in a moderator analysis) or informally (as a basis for grouping or

describing studies). A very important form of missing data is the missing data on

effect sizes that may result from incomplete reporting or selective reporting of

statistical results within studies. When data are selectively reported in a way that is

related to the magnitude of the effect size (e.g., when results are only reported when

they are statistically significant), such missing data can have biasing effects similar

to publication bias on entire studies. In either case, we need to ask how the results

would have changed if we had dealt with missing data in another way.

Missing data are not limited just to study characteristics that are potential

moderators nor to effect sizes. In some cases information needed to compute effect

size estimates or their variances may not be reported and will be imputed in the

meta-analysis (such as pretest-posttest correlations used to compute effect sizes). In

this context, sensitivity analyses can be used to investigate whether the conclusions

would differ substantially across a range of plausible imputed values.

In the next chapter we discuss cumulative analyses, which show how the summary

effect and variance shift as studies are added to the analysis. This approach can also be

used as part of a sensitivity analysis, for example by showing how our conclusions

would (or would not) shift as new studies (perhaps representing a broader range of

populations) are added.

SUMMARY POINTS

� The questions being asked by the analysis, as well as the empirical findings, will

help to shape the structure of the report, and this will vary from one analysis to

the next. If the effect size is consistent across all studies in the analysis we are

likely to focus on this effect and the fact that it is consistent. If the effect size

varies somewhat we will want to estimate the amount of dispersion in true

effects and consider the implications of this dispersion. If the effect size varies

substantially, or if a goal of the analysis had been to explore expected variation

in effect size, then the report would likely focus on the dispersion itself.

� The report of a meta-analysis should generally include a forest plot. This

provides an intuitive sense of the data, and helps to ensure that the statistics

will be interpreted in context.

� A sensitivity analysis is important to determine how robust the findings are. It

would be important to know how the findings would shift if we changed the

criteria for including studies, of if we changed some of the assumptions that

we made when performing the analysis.
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CHAPTER 42

Cumulative Meta-Analysis

Introduction
Why perform a cumulative meta-analysis?

INTRODUCTION

A cumulative meta-analysis is a meta-analysis that is performed first with one

study, then with two studies, and so on, until all relevant studies have been included

in the analysis. As such, a cumulative analysis is not a different analytic method

than a standard analysis, but simply a mechanism for displaying a series of separate

analyses in one table or plot. When the series are sorted into a sequence based on

some factor, the display shows how our estimate of the effect size (and its precision)

shifts as a function of this factor. When the studies are sorted chronologically, the

display shows how the evidence accumulated, and how the conclusions may have

shifted, over a period of time.

For example, consider the systematic review published by Lau et al. (1992) that

looked at the impact of streptokinase in preventing death following a myocardial

infarction. Streptokinase is a drug that has the potential to dissolve the blood clot

that is causing a heart attack, and thus reduce the damage to heart muscle.

The systematic review synthesizes data from 33 studies that had been published

over a period of 29 years. All the studies followed the same basic format, with

patients who had suffered a myocardial infarction being assigned to either strepto-

kinase or a placebo, and physicians recording the mortality rates in each group.

The standard meta-analysis is shown in Figure 42.1. Fletcher appears on the first

row, with a risk ratio of 0.229, 95% confidence interval of 0.030 to 1.750. The

p-value is 0.155, the sample size is 23, and the year is 1959. Dewar appears on the

next row, with a risk ratio of 0.571, 95% confidence interval from 0.196 to 1.665.

The p-value is 0.305, the sample size is 42, and the year is 1963. And so on for the

remaining 31 studies.
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The studies varied substantially in size, with five having fewer than 40 patients

while one (GISSI-1 in 1986) enrolled 11,712 patients and one (ISIS-2 in 1988)

enrolled 17,187 patients. Across all studies a total of 18,532 patients were assigned

to treatment and 18,442 to control. The number of deaths in the two groups was

1892 versus 2375. The summary effect (using the random-effects model) is shown

as a risk ratio of 0.794 with a 95% confidence interval from 0.724 to 0.870 and a

p-value of 0.0000008.

The cumulative meta-analysis is shown in Figure 42.2. Here, we have the same 33

studies but the values on each row are not the statistics for that study. Rather, they

are the summary values for a meta-analysis based on all studies up to and including

that row. The line marked Fletcher is based only on Fletcher, and so is identical to

the first line on the previous figure. The line marked Dewar shows the results of a

meta-analysis based on Fletcher and Dewar. And so on. (Note that the scale of the

forest plot has been changed.)

As one would expect, as we move down the plot the effect size tends to stabilize

(as the volume of data accumulates, any new study is less likely to produce a

sudden shift) and the confidence intervals tend to narrow (since the amount of

data increases). The last study on the plot is Wisenberg. Since the analysis on this

row includes data from all 33 studies, the statistics on this row are identical to

Figure 42.1 Impact of streptokinase on mortality – forest plot.
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those shown on the summary line. This also matches the summary line in

Figure 42.1.

WHY PERFORM A CUMULATIVE META-ANALYSIS?

Cumulative meta-analysis as an educational tool

Lau et al. used the streptokinase analysis to show the potential impact of meta-

analysis as part of the research process. They argued that if meta-analysis had been

available to researchers several decades earlier, then the benefits of streptokinase

could have been established as early as 1977. Had researchers performed a meta-

analysis in 1977 using the studies prior to and including the Australian-2 study, they

would have found that the risk ratio was 0.81, with a p-value of 0.020. Since meta-

analysis was not yet recognized as a useful tool, researchers continued to perform

additional studies (Lau et al., 1992; Lau & Chalmers, 1995; Lau, Schmid, &

Chalmers, 1995).

The studies published subsequent to the Australian-2 study enrolled a total of

32,660 patients, with approximately 50% assigned to placebo. In these studies

there were 414 more deaths among the placebo patients than among the treated

patients. Lau et al. argued that if meta-analysis had been conducted in 1977, then

Figure 42.2 Impact of streptokinase on mortality – cumulative forest plot.
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the efficacy of the treatment could have been established at that point and the

subsequent trials could have been avoided. Not only would some of the patients

who died on placebo in these trials have been saved, but the drug would have

become the standard of care and countless premature deaths worldwide could

have been avoided.

One can argue with the specific numbers. In particular, when we repeatedly look

at the cumulative data we may need to use a more conservative criterion

for significance than 0.05 before deciding that the treatment is effective

(see Using a cumulative analysis prospectively on page 375). Additionally, some

trials that were published subsequent to the Australian-2 study were already under-

way when the Australian-2 study was published. Nevertheless, the basic argument

is compelling, and captured the attention of the medical community. This cumula-

tive analysis played an important role in gaining acceptance for meta-analysis as a

useful mechanism for decision making.

The above should not be taken as a criticism of the people who performed the

later studies. Meta-analysis was not widely accepted in the 1970s and 1980s (indeed

it is not universally accepted even now) and so was simply not an option at the time.

To identify patterns in the data

While cumulative analyses are most often used to display the pattern of the evidence

over time, the same technique can be used for other purposes as well. Rather than

sort the data chronologically, we can sort it by any variable, and then display the

pattern of effect sizes.

For example, assume that we have 100 studies that looked at the impact of

homeopathic medicines, and we think that the effect is related to the quality of

the blinding process. We anticipate that studies with complete blinding will show no

effect, those with lower quality blinding will show a minor effect, those that blind

only some people will show a larger effect, and so on. We could sort the studies

based on the quality of the blinding (from high to low), and then perform a

cumulative analysis. If our expectations were correct, the cumulative effect would

initially be near zero, would increase as we moved to the next (lower) level of

quality, and would increase some more at the next level.

Similarly, we could use cumulative analyses to display the possible impact of

publication bias. The details will not be repeated here (this is covered in Chapter 30),

but the problem being addressed is that the large studies are assumed to be unbiased,

but the smaller studies may tend to over-estimate the effect size. We could

perform a cumulative analysis, entering the larger studies at the top and adding

the smaller studies at the bottom. If the effect was initially small when the large

(nonbiased) studies were included, and then increased as the smaller studies

were added, we would indeed be concerned that the effect size was related to

sample size. A benefit of the cumulative analysis is that it displays not only if

there is a shift in effect size, but also the magnitude of the shift.
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Display, not analysis

It is important to recognize that cumulative meta-analysis is a mechanism for

display, rather than analysis. If we sort studies chronologically, we can see how

the weight of the evidence has shifted over time. If we sort studies by the effec-

tiveness of blinding, we can see how the effect size shifts with the addition of poor-

quality studies. If we sort studies by sample size, we can display the potential impact

of publication bias.

These kinds of displays are compelling and can serve an important function.

However, if our goal is actually to examine the relationship between a factor and

effect size, then the appropriate analysis is a meta-regression, which looks at the

relationship between each the study’s effect size and the study’s covariates (whether

year of publication, or sample size, or something else).

Using a cumulative analysis prospectively

As noted, the primary function of a cumulative analysis is to provide a mechanism

for display. For example, when we sort the studies by year of publication and

perform cumulative meta-analysis retrospectively, the analysis serves to provide

us with historical context.

A very different situation emerges when the concept is applied prospectively

(a process sometimes called prospective cumulative meta-analysis). In this case, a

researcher performs a meta-analysis at time X using all the available data. If the

cumulative effect is not definitive, then the analysis is repeated at time Xþ1 with the

addition of the next study (when that study becomes available). The process is repeated

until such time as the results become definitive, at which time the process is stopped.

There is a serious problem with this use of cumulative analysis if the criterion for

stopping is based on the analysis reaching a level of statistical significance. The

problem is that the 0.05 (or any other) criterion only works as advertised when the

data are subjected to a single statistical test. If the test is applied repeatedly, then

(assuming that the null is true) the likelihood of a false positive is 0.05 for any given

test, but exceeds 0.05 when accumulated over all tests. This is analogous to a

problem that arises in longitudinal studies where researchers follow a cohort of

patients over time, look at the data periodically, and will stop the study if the p-value

at any time crosses a given threshold.

There is an entire body of research on the best ways to allocate this risk and much

of this can be applied to cumulative meta-analysis as well (Devereaux et al., 2005;

Pogue & Yusuf, 1998; Whitehead, 1997). For example, one solution used in long-

itudinal trials is to work with a more stringent criterion for stopping the trial, such as

0.01 rather than 0.05 (if 5 peeks are planned) so that the overall risk of a type I error

is kept at an acceptable level.

At the same time, we need to recognize that researchers, clinicians and patients do

not always have the luxury of waiting until enough studies have been completed
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before they make a decision. People who need to make a decision at a given point

may need to base that decision on the evidence available at that point, and for this

purpose a cumulative analysis of all available studies may be the best option.

However, we can still continue to perform new studies and add to the cumulative

evidence until the relevant questions have been fully addressed.

SUMMARY POINTS

� Cumulative meta-analysis is a mechanism for displaying results from a series

of separate analyses in one table or plot. The studies are typically sorted

chronologically, which shows how the evidence has accumulated (and possi-

bly how the results have shifted) over time. However, the studies may also be

sorted by other variables, to show how the results shift as a function of some

other factor (such as study quality).

� Cumulative analysis is a mechanism for display, not for analysis. If our goal is

to test the hypothesis that the effect size has shifted over time, the correct

approach would be to use subgroup analysis or meta-regression.

� A variant of cumulative analyses calls for study results to be added to a meta-

analysis as each study is completed, with the analysis repeated every time the

list of studies is updated. While this approach may provide the most up-to-

date data for someone needing to make a decision about the utility of a

treatment, if the plan is to stop adding studies when the analysis becomes

definitive, then we need to adjust for the fact that we are having multiple looks

at the data.
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CHAPTER 43

Criticisms of Meta-Analysis

Introduction
One number cannot summarize a research field
The file drawer problem invalidates meta-analysis
Mixing apples and oranges
Garbage in, garbage out
Important studies are ignored
Meta-analysis can disagree with randomized trials
Meta-analyses are performed poorly
Is a narrative review better?
Concluding remarks

INTRODUCTION

While meta-analysis has been widely embraced by large segments of the research

community, this point of view is not universal and people have voiced numerous

criticisms of meta-analysis.

Some of these criticisms are worth mentioning for their creative use of metaphor.

The first set of Cochrane reviews dealt with studies in neonatology, and one

especially creative critic, cited by Mann (1990), called the reviewers an obstetrical

Baader Meinhof gang (obstetrical being a reference to the field of research, and

Baader Meinhof gang a reference to the terrorist group that operated in Europe

during the 1970s and 1980s).

Others were more circumspect in their comments. Eysenck (1978) criticized a

meta-analysis as an exercise in mega-silliness. Shapiro (1994) published a

paper entitled Meta-Analysis / Shmeta Analysis. Feinstein (1995) wrote an

editorial in which he referred to meta-analysis as ‘statistical alchemy for the

21st century’.
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These critics share not only an affinity for allegory and alliteration but also a

common set of concerns about meta-analysis. In this chapter we address the

following criticisms that have been leveled at meta-analysis, as follows.

� One number cannot summarize a research field

� The file drawer problem invalidates meta-analysis

� Mixing apples and oranges

� Garbage in, garbage out

� Important studies are ignored

� Meta-analysis can disagree with randomized trials

� Meta-analyses are performed poorly

After considering each of these questions in turn, we ask whether a traditional

narrative review fares any better than a systematic review on these criticisms. And,

we summarize the legitimate criticisms of meta-analysis that need to be considered

whenever meta-analysis is applied.

ONE NUMBER CANNOT SUMMARIZE A RESEARCH FIELD

Criticism

A common criticism of meta-analysis is that the analysis focuses on the summary

effect, and ignores the fact that the treatment effect may vary from study to study. Bailar

(1997), for example, writes, ‘Any attempt to reduce results to a single value, with

confidence bounds, is likely to lead to conclusions that are wrong, perhaps seriously so.’

Response

In fact, the goal of a meta-analysis should be to synthesize the effect sizes, and not

simply (or necessarily) to report a summary effect. If the effects are consistent, then

the analysis shows that the effect is robust across the range of included studies. If

there is modest dispersion, then this dispersion should serve to place the mean effect

in context. If there is substantial dispersion, then the focus should shift from the

summary effect to the dispersion itself. Researchers who report a summary effect

and ignore heterogeneity are indeed missing the point of the synthesis.

THE FILE DRAWER PROBLEM INVALIDATES META-ANALYSIS

Criticism

While the meta-analysis will yield a mathematically sound synthesis of the studies

included in the analysis, if these studies are a biased sample of all possible studies,

then the mean effect reported by the meta-analysis will reflect this bias. Several

lines of evidence show that studies finding relatively high treatment effects are

more likely to be published than studies finding lower treatment effects. The latter,
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unpublished, research lies dormant in the researchers’ filing cabinets, and has led to

the use of the term file drawer problem for meta-analysis.

Response

Since published studies are more likely to be included in a meta-analysis than their

unpublished counterparts, there is a legitimate concern that a meta-analysis may

overestimate the true effect size.

Chapter 30 (entitled Publication Bias) explores this question in some detail. In that

chapter we discuss methods to assess the likely amount of bias in any given meta-

analysis, and to distinguish between analyses that can be considered robust to the

impact of publication bias from those where the results should be considered suspect.

We must remember that publication bias is a problem for any kind of literature

search. The problem exists for the clinician who searches a database to locate

primary studies about the utility of a treatment. It exists for persons performing a

narrative review. And, it exists for persons performing a meta-analysis. Publication

bias has come to be identified with meta-analysis because meta-analysis has the

goal of providing a more accurate synthesis than other methods, and so we are

concerned with biases that will interfere with this goal. However, it would be a

mistake to conclude that this bias is not a problem for the narrative review. There, it

is simply easier to ignore.

MIXING APPLES AND ORANGES

Criticism

A common criticism of meta-analysis is that researchers combine different kinds of

studies (apples and oranges) in the same analysis. The argument is that the

summary effect will ignore possibly important differences across studies.

Response

The studies that are brought together in a meta-analysis will inevitably differ in their

characteristics, and the difficulty is deciding just how similar they need to be. The

decision as to which studies should be included is always a judgment, and people

will have different opinions on the appropriateness of combining results across

studies. Some meta-analysts may make questionable judgments, and some critics

may make unreasonable demands on similarity.

We need to remember that meta-analyses almost always, by their very nature,

address broader questions than individual studies. Hence a meta-analysis may be

thought of as asking a question about fruit, for which both apples and oranges (and

indeed pears and melons) contribute valuable information. One of the strengths of

meta-analysis is that the consistency, and hence generalizability, of findings from

one type of study to the next can be assessed formally.
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Of course, we always need to remember that we are dealing with different kinds of

fruit, and to anticipate that effects may vary from one kind to the other. It is a further

strength of meta-analysis that these differences, if identified, can be investigated

formally. Assume, for example, that a treatment is very effective for patients with

acute symptoms but has no effect for patients with chronic symptoms. If we were to

combine data from studies that used both types of patients, and conclude that the

treatment was modestly effective (on average), this conclusion would not be accurate

for either kind of patient. If we were to restrict our attention to studies in only patients

with acute symptoms, or only patients with chronic symptoms, we could report how

the treatment worked with one type of patient, but could only speculate about how it

would have worked with the other type. By contrast, a meta-analysis that includes

data for both types of patients may allow us to address this question empirically.

GARBAGE IN, GARBAGE OUT

Criticism

The often-heard metaphor garbage in, garbage out refers to the notion that if a

meta-analysis includes many low-quality studies, then fundamental errors in the

primary studies will be carried over to the meta-analysis, where the errors may be

harder to identify.

Response

Rather than thinking of meta-analysis as a process of garbage in, garbage out we

can think of it as a process of waste management. A systematic review or meta-

analysis will always have a set of inclusion criteria and these should include criteria

based on the quality of the study. For trials, we may decide to limit the studies to

those that use random assignment, or a placebo control. For observational studies

we may decide to limit the studies to those where confounders were adequately

addressed in the design or analysis. And so on. In fact, it is common in a systematic

review to start with a large pool of studies and end with a much smaller set of studies

after all inclusion/exclusion criteria are applied.

Nevertheless, the studies that do make it as far as a meta-analysis are unlikely to

be perfect, and close attention should be paid to the possibility of bias due to study

limitations. A meta-analysis of a collection of studies that is each biased in the same

direction will suffer from the same bias and have higher precision. In this case,

performing a meta-analysis can indeed be more dangerous than not performing one.

However, as noted in the response to the previous criticism about apples and

oranges, a strength of meta-analysis is the ability to investigate whether variation in

characteristics of studies is related to the size of the effect. Suppose that ten studies

used an acceptable method to randomize patients while another ten used a ques-

tionable method. In the analysis we can compare the effect size in these two

subgroups, and determine whether or not the effect size actually differs between
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the two. Note that such analyses (those comparing effects in different subgroups)

can have very low power so need to be interpreted carefully, especially when there

are not many studies within subgroups.

IMPORTANT STUDIES ARE IGNORED

Criticism

Whereas the garbage in, garbage out problem relates to the inclusion of studies that

perhaps should not be included, a common complementary criticism is that important

studies were left out. The criticism is often leveled by people who are uncomfortable

with the findings of a meta-analysis. For example, a meta-analysis to assess the effects

of antioxidant supplements (beta-carotene, vitamin A, vitamin C, vitamin E, and

selenium) on overall mortality was met with accusations on the web site of the Linus

Pauling Institute (Oregon State University) that in this ‘flawed analysis of flawed data’

the authors looked at 815 human clinical trials of antioxidant supplements, but only 68

were included in the meta-analysis.

Response

We have explained that systematic reviews and meta-analyses require explicit

mechanisms for deciding which studies to include and which ones to exclude.

These eligibility criteria are determined by a combination of considerations of

relevance and considerations of bias, and are typically decided before the search

for studies is implemented. Studies should be sufficiently similar to yield results

that can be interpreted, and sufficiently free of bias to yield results that can be

believed. For both purposes, judgments are required, and not all meta-analysts or

readers would reach the same judgments on each occasion. Importantly, in meta-

analysis the criteria are transparent and are described as part of the report.

META-ANALYSIS CAN DISAGREE WITH RANDOMIZED TRIALS

Criticism

LeLorier et al. (1997) published a paper in which they pointed out that meta-

analyses sometimes yield different results than large scale randomized trials.

Specifically, they located cases in the medical literature where someone had

performed a meta-analysis, and someone else subsequently performed a large

scale randomized trial that addressed the same question (e.g. Does the treatment

work?). The authors reported that the results of the meta-analysis and the rando-

mized trial matched (both were statistically significant, or neither was statistically

significant) in about 66% of cases, but did not match (one was statistically sig-

nificant but the other was not) in the remaining 34%. Since randomized trials are

generally accepted as the gold standard they conclude that some 34% of these meta-

analyses were wrong, and that meta-analyses in general cannot be trusted.
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Response

There are both technical and conceptual flaws in this criticism. The technical flaws

relate to the question of what we mean by matching, and the authors’ decision to

define matching as both studies being (or not being) statistically significant. The

discussion that follows draws in part on comments by Ioannidis et al. (1998), Lelorier

et al. (1997, 536–543) and others (see further readings at the end of this chapter).

Consider Figure 43.1, which shows a meta-analysis of five randomized controlled

trials (RCTs) at the top, and a subsequent large-scale randomized trial at the bottom.

In this fictional example the five studies in the meta-analysis each showed

precisely the same effect, an odds ratio of 0.80. The summary effect in the meta-

analysis is (it follows) an odds ratio of 0.80. And, the subsequent study showed the

same effect, an odds ratio of 0.80.

The only difference between the summary effect in the meta-analysis and the

effect in the subsequent study is that the former is reported with greater precision

(since it is based on more data) and therefore yields a p-value under 0.05. By the

LeLorier criterion these two conclusions would be seen as conflicting, when in fact

they have the identical effect size.

Additionally, LeLorier concludes that in the face of this conflict the single

randomized trial is correct and the meta-analysis is wrong. In fact, though, it is

the meta-analysis, which incorporates data from five randomized trials rather than

one, that has the more powerful position. (What would happen if we performed a

new meta-analysis which incorporated the most recent randomized trial? Would

0.50 1.0 2.0

RR N p-value

Trial A 0.80 800 0.265

Trial B 0.80 800 0.265

Trial C 0.80 800 0.265

Trial D 0.80 800 0.265

Summary 0.80 4,000 0.013

Trial E 0.80 800 0.265

Risk ratio and 95% confidence interval

Favours Treatment Favours Placebo

0.50 1.0 2.0

New Trial 0.80 800 0.265

Figure 43.1 Forest plot of five fictional studies and a new trail (consistent effects).
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LeLorier now see this new meta-analysis as flawed?) In fact, the real issue is not that

a meta-analysis disagrees with a randomized trial, but that randomized trials dis-

agree with each other.

At a meeting of The Cochrane Collaboration in Baltimore (1996), a plenary

speaker made the same argument being made by LeLorier et al. (that meta-analyses

sometimes yield different results than randomized trials) and, like the paper, cited the

statistic that roughly a third of meta-analyses fail to match the comparable rando-

mized trial. A distinguished member of the audience, Harris Cooper, asked the

speaker if he knew what percentage of randomized trials fail to match the next

randomized trial on the same topic. It turns out that the percentage is roughly a third.

However, to move on to a more interesting question, let’s assume that the results

from a meta-analysis and a randomized trial really do differ. Suppose that the meta-

analysis yields a risk ratio of 0.67 (with a 95% confidence interval of 0.84 to 0.77)

while the new trial yields a risk ratio of 0.91 (0.82 to 1.0). According to the meta-

analysis the treatment reduces the risk by at least 23%, while the new trial says that

its impact is no more than 18%.

In this case the effect is different in the two analyses, but that does not mean that

one is wrong and the other is right. Rather, it behooves us to ask why the two results

should differ, much as we would if we had two large scale randomized trials with

significantly different results. Often, it will turn out that the different analyses either

were asking different questions or differed in some important way. A careful

examination of the differences in method, patient population, and so on, may help

to uncover the source of the difference.

0.50 1.0 2.0

RR

Trial A 0.55

Trial B 0.61

Trial C 0.67

Trial D 0.74

Trial E 0.82

Summary 0.67

Risk ratio and 95% limits

Favours Treatment Favours Placebo

0.50 1.0 2.0

New Trial 0.91

Figure 43.2 Forest plot of five fictional studies and a new trial (heterogeneous effects).
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Consider the following scenario, depicted in Figure 43.2. A new compound is

introduced, which is meant to minimize neurological damage in stroke patients. In

1990, the compound is tested in a randomized trial involving patients with a very poor

prognosis, and yields a risk ratio of 0.55. Based on these encouraging results, in 1994

it is tested in patients with a somewhat better prognosis. Since the patients in this

group are more likely to recover without treatment, the impact of the drug is less

pronounced, and the risk ratio is 0.61. By 1998 the drug is being tested with all

patients, and the risk ratio is 0.82. These are the studies included in the meta-analysis.

The new trial is performed using a relatively healthy population and (following the

trend seen in the meta-analysis) yields a risk ratio of 0.91.

If one were to report a mean effect of 0.67 for the meta-analysis versus 0.91 for the

new trial there would indeed be a problem. But, as we have emphasized throughout

this volume, the meta-analysis should focus on the dispersion in effects and try to

identify the reason for the dispersion. In this example, using either health status or

study year as a covariate we can explain the pattern of the effects, and would have

predicted that the effect size in the new study would fall where it did.

META-ANALYSES ARE PERFORMED POORLY

Criticism

John C. Bailar, in an editorial for the New England Journal of Medicine (Bailar,

1997), writes that mistakes such as those outlined in the prior criticisms are common

in meta-analysis. He argues that a meta-analysis is inherently so complicated that

mistakes by the persons performing the analysis are all but inevitable. He also

argues that journal editors are unlikely to uncover all of these mistakes.

Response

The specific points made by Bailar about problems with meta-analysis are entirely

reasonable. He is correct that many meta-analyses contain errors, some of them

important ones. His list of potential (and common) problems can serve as a bullet

list of mistakes to avoid when performing a meta-analysis.

However, the mistakes cited by Bailar are flaws in the application of the

method, rather than problems with the method itself. Many primary studies

suffer from flaws in the design, analyses, and conclusions. In fact, some

serious kinds of problems are endemic in the literature. The response of the

research community is to locate these flaws, consider their impact for the

study in question, and (hopefully) take steps to avoid similar mistakes in the

future. In the case of meta-analysis, as in the case of primary studies, we

cannot condemn a method because some people have used that method

improperly. As Bob Abelson once remarked in a related context, ‘Think of

all the things that people abuse. There are college educations. And oboes.’
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IS A NARRATIVE REVIEW BETTER?

In his editorial Bailar concludes that, until such time as the quality of meta-analyses

is improved, he would prefer to work with the traditional narrative reviews: ‘I still

prefer conventional narrative reviews of the literature, a type of summary familiar to

readers of the countless review articles on important medical issues.’

We disagree with the conclusion that narrative reviews are preferable to systema-

tic reviews, and that meta-analyses should be avoided. The narrative review suffers

from every one of the problems cited for the systematic review. The only difference

is that, in the narrative review, these problems are less obvious. For example:

� The process of determining which studies to include in the systematic review or

meta-analysis is difficult and prone to error. But at least there is a set of criteria

for determining which studies to include. If the narrative review also has such

criteria, then it is subject to the same kinds of error. If not, then we have no way of

knowing how studies are being selected, which only compounds the problem.

� Meta-analyses can be affected by publication bias. But the same biases exist in

the material upon which narrative reviews are based. Meta-analysis offers a

means to investigate the likelihood of these biases and their potential impact on

the results.

� Meta-analyses may be based on low quality primary research. But a good systema-

tic review includes a careful assessment of the included studies with regard to their

quality or risk of bias, and meta-analytic methods enable formal examination of the

potential impact of these biases. A narrative reviewer may discount a study because

of a belief that the results are suspect for some reason. However, a limitation can be

found for virtually any study, so in the absence of a systematic quality assessment

of every study, a narrative reviewer is free to be suspect about any study’s results

and to lay the blame on one or more of its limitations.

� The weighting scheme in a meta-analysis may give a lot (or little) weight to

specific studies in ways that may appear inappropriate. But in a meta-analysis the

weights reflect specific goals (to minimize the variance, or to reflect the range of

effects) and the weighting scheme is detailed as part of the report, so a reader is

able to agree or disagree with it. By contrast, in the case of a narrative review, the

reviewer assigns weights to studies based on criteria that he or she does not

communicate, and may not even be able to fully articulate. Here, the problem

involves not only the relative weights assigned to small or large studies. It

extends also to the propensity of one reviewer to focus on effect sizes, and of

another to focus on (and possibly be misled by) significance tests.

� Some meta-analyses focus on the summary effect and ignore the pattern of

dispersion in the results. To ignore the dispersion is clearly a mistake both in a

narrative review and in a meta-analysis. However, meta-analysis provides a full

complement of tools to assess the pattern of dispersion, and possibly to explain it

as a function of study-level covariates. By contrast, it would be an almost
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impossible task for a narrative reviewer to accurately assess the pattern of

dispersion, or to understand its relationship to other variables.

� In support of the narrative review, Bailer cites the role of the expert with

substantive knowledge of the field, who can identify flaws in specific studies,

or the presence of potentially important moderator variables. However, this is not

an advantage of the narrative review, since the expert is expected to play the same

role in a meta-analysis. Steve Goodman (1991) wrote, ‘The best meta-analyses

knit clinical insight with quantitative results in a way that enhances both. They

should combine the careful thought and synthesis of a good review with the

scientific rigor of a good experiment.’

CONCLUDING REMARKS

Most of the criticisms raised in this chapter point to problems with meta-analysis,

and make the implicit argument that the problem would go away if we dispensed

with the meta-analysis and performed a narrative review. We have argued that these

problems exist also for the narrative review, and that the key advantage of the

systematic approach of a meta-analysis is that all steps are clearly described so that

the process is transparent.

Is meta-analysis so difficult that the method should be abandoned, as some have

suggested? Our answer is obviously that it is not. Most of the criticisms raised deal

with the application of the method, rather than with the method itself. What we

should do is take the valid criticisms seriously and protect against them in planned

analyses and by thoughtful interpretation of results.

Steven Goodman, in his editorial for Annals of Internal Medicine (1991) writes,

Regardless of the summary number, meta-analysis should shed light on why trial

results differ; raise research and editorial standards by calling attention to the

strengths and weaknesses of the body of research in an area; and give the practitioner

an objective view of the research literature, unaffected by the sometimes distorting

lens of individual experience and personal preference that can affect a less structured

review.

SUMMARY POINTS

� Meta-analyses are sometimes criticized for a number of flaws, and critics

have argued that narrative reviews provide a better solution.

� Some of these flaws, such as the idea that we cannot summarize a body of data

in a single number, are based on misunderstandings of meta-analysis.

� Many of the flaws (such as ignoring dispersion in effect sizes) reflect pro-

blems in the way that meta-analysis is used, rather than problems in the

method itself.
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� Other flaws (such as publication bias) are a problem for meta-analysis.

However, the suggestion that these problems do not exist in narrative reviews

is wrong. These problems exist for narrative reviews as well, but are simply

easier to ignore since those reviews lack a clear structure.
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CHAPTER 44

Software

Introduction
The software
Three examples of meta-analysis software
Comprehensive Meta-Analysis (CMA) 2.0
RevMan 5.0
Stata macros with Stata 10.0

Full disclosure

The authors of this volume are the developers of Comprehensive Meta-Analysis.

One of us (JH) also contributed to the development of algorithms for RevMan and

the Stata macros for meta-analysis. These are the three programs discussed in most

detail in this chapter.

The book’s web site, www.Meta-Analysis.com offers the following

� Step-by-step instructions for performing a meta-analysis using Excel, CMA,

Stata macros, or RevMan

� The datasets used in this book as Excel, CMA, Stata, and RevMan files

� Updated links to the other web sites mentioned in this chapter.

INTRODUCTION

Our goal in this section is to provide an overview of computer programs for meta-

analysis.

Three types of software can be used to perform a meta-analysis. One option is to

use a spreadsheet such as Microsoft Excel. A second is to use a general purpose

statistical package such as SPSS, SAS, R or Stata. A third option is to use a program

developed specifically for meta-analysis.

Performing a meta-analysis using a spreadsheet such as Excel is an excellent

mechanism for learning (or teaching) meta-analysis since it allows the researcher to
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develop an appreciation for the formulas, and spreadsheets for this purpose can be

downloaded from the book’s web site. However, spreadsheets should not generally

be used for real analyses as this approach will limit the use of important options

(such as forest plots) and is prone to error.

General purpose statistical packages such as SPSS, SAS, R and Stata have no

inherent support for meta-analysis. These packages are intended primarily for

analysis of primary studies, and do not offer an easy option for assigning weights

as required for a meta-analysis (especially for random-effects analyses). Addition-

ally, in the case of subgroup analysis (analysis of variance) or meta-regression, the

rules for assigning degrees of freedom are different for meta-analysis than for

primary studies, and so using these procedures will yield incorrect p-values.

While the basic routines in these packages should not be used for meta-analysis, it

is possible to write code (macros) that can be integrated into the programs and used

to perform a meta-analysis. For most major packages, meta-analysis algorithms

have been programmed and the code made available for others to use.

� For SPSS, macros have been developed by David Wilson (http://mason.gmu.edu/

�dwilsonb/ma.html).

� For SAS, macros have been developed by David Wilson (http://mason.gmu.edu/

�dwilsonb/ma.html). Additionally, code is available in tutorials presented by

Normand (1999), van Houwelingen (2002), and also in books by Wang and

Bushman (1999), and by Arthur, Bennett and Huffcutt (2001).

� For R, packages have been developed by Thomas Lumley (rmeta) and Guido

Schwarzer (meta).

� For Stata, numerous authors have developed macros, some of which are discussed

below.

The third option is to use software developed specifically for meta-analysis,

such as

� Comprehensive Meta-Analysis (CMA), developed by the authors of this volume

(see www.Meta-Analysis.com)

� RevMan, developed by the The Cochrane Collaboration (see www.cc-ims.net/

RevMan)

� Metawin Version 2.0, developed by Rosenberg, Adams and Gurevitch (see

www.metawinsoft.com)

THE SOFTWARE

We focus on two programs that are relatively rich in features and also widely used in

meta-analysis. These are Comprehensive Meta-Analysis (CMA) and RevMan. We

also discuss a set of macros developed for use with Stata (a general purpose

statistical package).

392 Resources and Software



THREE EXAMPLES OF META-ANALYSIS SOFTWARE

Useful functions

We start by outlining the kinds of features that a researcher might need in a program,

and discuss which of these features are supported by Comprehensive Meta-Analysis

(CMA), RevMan, and the macros available for Stata.

Compute an effect size and variance for each study

The first step in performing a meta-analysis is to compute an effect size and

variance from the summary data for each study. In some systematic reviews all

studies use a common design and report data in the same way. For example, all

studies may report data as a 2� 2 table (events and non-events) for independent

groups. Or, all studies may report data as means, standard deviations, and sample

size for two independent groups. All of the programs can accept data in these

formats.

In other cases, however, the meta-analysis will include studies that used

different designs (some used independent groups while others used matched

groups). Or, it will include studies that reported data in different formats. For

example, some studies might report the mean, standard deviation and sample

size for each group while others report only a p-value and sample size. CMA

is able to accept data in more than 100 formats and allows the user to mix and

match formats in the same analysis. RevMan and the Stata macros accept data

in the more common formats only, and require that data for all studies be

entered in the same format.

Perform the meta-analysis

All of the programs are able to perform fixed-effect and random-effects analyses.

They all report the key statistics, such as the summary effect and confidence

intervals, measures of heterogeneity (T2, Q, I2) and provide enough information

so that the researcher can compute additional statistics (such as prediction intervals)

on their own, if needed. For binary data all programs offer the option of using

inverse variance models, Mantel-Haenszel weights or (for the odds ratio) the one-

step (Peto) method.

Sensitivity analysis

It is often useful to see how the results would change if one study (or a set of studies)

was removed from the analysis. All of the programs allow the researcher to exclude

one study at a time (or to exclude sets of studies) and see how this affects the results.

Two of the programs (CMA and the Stata macros) allow the researcher to automate
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the process, performing the analysis repeatedly and removing a different study on

each pass.

Create a forest plot

The forest plot is an important part of any analysis, providing a context for

the statistics and also a mechanism for communicating results to others. All

of the programs are able to produce a forest plot, but they differ widely in how

much control the user has over the forest plot’s format. Examples are provided below.

Complex data structures

If some (or all) studies include data from more than one subgroup, outcome,

time-point, or comparison, then there needs to be a mechanism to work with this

in the analysis. CMA allows the user to define a hierarchical structure (for example,

multiple outcomes within studies) and then offers the user a set of options including

the option to create a synthetic variable based on some (or all) the outcomes, or to

work with each outcome separately. RevMan allows the user to work with each

outcome separately. The Stata macros do not include a provision for complex data

structures but the user could write code to address this situation.

Subgroup analyses and meta-regression

In some cases the researcher will want to classify studies on the basis of a moderator

variable and compare the effect size in two or more groups of studies. All three

programs can do this. In other cases, the researcher will want to code each study for

one or more continuous moderators, and perform a meta-regression to assess the

relationship between effect size and the covariate(s). Two of the programs (CMA

and the Stata macros) support these kinds of analyses.

Publication bias

Often, it is important to perform one or more analyses to assess the possible impact

of publication bias. Two of the programs (CMA and the Stata macros) offer a full set

of tools to assess publication bias. RevMan will produce a funnel plot but will not

perform any statistical analyses for publication bias.

Look and feel

We also try to give a sense for the look and feel of each program. For example, some

programs offer a point-and-click interface while others allow the researcher to write

code.
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COMPREHENSIVE META-ANALYSIS (CMA) 2.0

In Comprehensive Meta-Analysis (CMA) the researcher enters summary data into a

spreadsheet, and then clicks ‘Run’ to display the results of the meta-analysis. The

program’s strengths are its flexibility in working with many different kinds of data, its

ease of use, its ability to customize and export forest plots, and its Windows look and

feel. The program also incorporates a number of features for educational purposes,

such as the option to display the formulas that are used to compute effect sizes, and the

option to display a spreadsheet that shows how the summary effects were computed.

The program is available in several versions. The entry-level version includes some

50 formats for data entry, all of the basic computational options, and high-resolution

forest plots. Advanced versions add 50 additional formats for data entry, and

advanced computational options such as subgroup analysis, meta-regression, and

procedures to assess publication bias, as well as additional forest plot options.

Data entry
The data entry sheet looks similar to Excel. The user enters the data into the white

columns. The program computes the effect size and variance, and displays these in

the shaded columns. In Figure 44.1 the user has entered the events and total n for

each study, and the program has computed the odds ratio, log odds ratio, risk ratio,

log risk ratio, and risk difference.

In this example the data were events and sample size, but this is only one of more

than 100 formats available. For example, if the user wanted to enter means, standard

deviations, and sample size for each study, the program would display the corre-

sponding set of columns for data entry. The screenshot has been cropped for clarity

(additional columns are normally displayed as well).

The program will accept data for different study designs, such as independent

groups, matched groups, and cross-over designs. The program will accept data in

various formats and allows the user to mix and match formats within the same

analysis. For example, the user can provide means, standard deviations, and sample

size for some studies, and the p-value and sample size for others. Or, the user can

Figure 44.1 CMA – data entry screen for 2� 2 tables.

Chapter 44: Software 395



provide the number of events and non-events for some studies, the odds ratio and its

confidence interval for others, and the log odds ratio and its standard error for others.

The program also displays the formula used to compute the effect size and variance.

The program will work with the following effect sizes: raw mean difference,

standardized mean difference (d and g), odds ratio (and log odds ratio) risk ratio

(and log risk ratio) risk difference, correlation (and Fisher’s z), rate ratio, and hazard

ratio. It will also work with point estimates in single group designs such as the mean,

proportion, or rate in a single group. Finally, the program will work with a generic

effect size.

Analysis
To perform an analysis, the user clicks the ‘Run’ button to display a screen similar

to the one shown here (see Figure 44.2). Menus and toolbars are used to customize

many elements of the computational model and display, including the following.

� Display results for fixed and/or random-effects models.

� Display weights for the two models simultaneously.

� Display a table of statistics including effect size, variance, standard error, con-

fidence limits, Q, T2, T, and I2.

Create a forest plot
The main analysis is displayed as a forest plot (Figure 44.2). Additionally, the

program allows the user to create a high-resolution plot, customize the plot by

specifying what columns to display, what symbols to use, and so on (Figure 44.3).

The program features a one-click export to Word and PowerPoint, and the plots can

also be inserted into any other program.

Sensitivity analysis
The program can run the analysis repeatedly, removing a different study on each

pass, to show the impact of that study on the results. The user can also define sets of

studies and include or remove these as a block by using a checkbox.

Figure 44.2 CMA – analysis screen.
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Work with subgroups within studies and with multiple outcomes
The program is able to work with complex data structures. On the data entry sheet

the user can specify that some (or all) studies include more than one subgroup,

outcome, time-point, and/or comparison. In this case the program will provide room

for additional rows of data within each study.

In the analysis, the program will offer any relevant options. For example, if some

studies include several independent subgroups, the user will be able to limit an

analysis to one or more subgroups while excluding others, or to merge data across

subgroups within studies. Or, if some studies include more than one outcome, the

user will be able to limit the analysis to one or more outcomes, and/or create

synthetic effects, and/or compare the effect in different outcomes.

Perform subgroup analysis and meta-regression
When entering data the user can create categorical variables and enter a value (for

example, acute or chronic) for each study. In the analysis, the program will allow

the user to group by the categorical variables and perform a subgroups analysis

(analysis of variance). Similarly, when entering data the user can create continuous

variables, and then perform a meta-regression.

Perform analyses for publication bias
The program will create a funnel plot, will perform the Begg and Mazumdar and the

Egger tests for bias, and will report Rosenthal’s and Orwin’s Fail-safe N. It will also

Figure 44.3 CMA – high resolution forest plot.
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perform the Trim and Fill analysis, and a cumulative analysis sorted by sample size

or precision.

Interface with other programs
Users can copy and paste summary data from any Windows-based spreadsheet into

CMA. They can also copy any computed values from CMA to the clipboard, and

from there into other programs.

Contact information
Web site www.Meta-Analysis.com

e-mail info@Meta-Analysis.com

REVMAN 5.0

RevMan (Review Manager) is the software developed by The Cochrane Collaboration

for use with Cochrane reviews, though the program may be used outside the organization

as well (see the web site for details). Whereas CMA and the Stata macros provide a

mechanism solely for the meta-analysis, RevMan provides a mechanism for all facets of

the systematic review, of which the meta-analysis is but one part. This is an advantage for

people who want a mechanism for managing all parts of the review, and a critical

advantage for researchers who want to upload the completed review to The Cochrane

Library, as this is the only mechanism for doing so. However, it can be a disadvantage for

others as the user needs to go through multiple steps before getting to the analysis itself.

Data entry
The data entry sheet is shown in Figure 44.4. The user enters the data into the white

cells. The program computes various statistics and displays these in the shaded cells.

In this example the user has entered the events and total n for each study, and

the program has computed the odds ratio. The screenshot has been cropped for

clarity (a forest plot is normally displayed as well).

Figure 44.4 RevMan – data entry screen for 2 x 2 tables.
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RevMan will accept data in four formats, which are: events and sample size,

means, standard deviations and sample size, O minus E and V, and a generic effect

size. All studies in the analysis must be in the same format. A researcher whose data

had been provided in multiple formats would need to compute effect sizes and

variance for each study externally (for example, using Excel) and then copy the

computed effect size and variance into the program.

The program will work with the following effect sizes: Raw mean difference,

standardized mean difference (g), odds ratio, risk ratio, and risk difference. The

program will also work with a generic effect size.

Analysis
The program displays a screen similar to the one shown here (Figure 44.5). Menus

are used to customize many elements of the computational model and display,

including the following.

� Display results for fixed or random-effects models.

� Display weights for either model.

� Display a table of statistics including effect size, variance, standard error, con-

fidence limits, Q, T2, and I2.

Create a forest plot
The analysis engine can generate a separate forest plot image. While there is limited

flexibility in the plot, the design is well thought out and is appropriate for most

analyses.

Sensitivity analysis
The user can manually exclude one or more studies from the analysis.

Perform subgroup analysis and meta-regression
Within each study comparison, the program allows the user to enter data by

subgroup. The program produces an analysis for each comparison, and, when

subgroup variables are entered, groups the results by subgroup. The program will

Figure 44.5 RevMan – analysis screen.
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perform a separate analysis for each subgroup and will compare the effect across

subgroups, but cannot perform a meta-regression.

Perform analyses for publication bias
RevMan will display a funnel plot option but does not offer any tests or procedures

for publication bias.

Interface with other programs
Users can copy and paste summary data from any Windows-based spreadsheet into

RevMan.

Contact information
Web site www.cc-ims.net/RevMan

STATA MACROS WITH STATA 10.0

Stata is a general purpose statistical package for primary studies, and there are no

meta-analysis routines included in the program itself. However, Stata encourages

users to develop special-purpose macros (blocks of code) which can then be posted

to the Stata web site, and a full set of such macros has been developed for meta-

analysis.

Stata is a command-driven program, which means that the user types in a command

(for example ‘metan TreatedDead TreatedAlive ControlDead ControlAlive, fixed rr’)

rather than clicking a button to perform an analysis. However, it is generally possible

to use a dialog box to generate the command, which simplifies the process.

Someone not familiar with Stata would need to acquire and learn the program

before turning to the meta-analysis procedures. However, for researchers who

are already using this program, the macros are certainly worth a look. For these

people the advantages of this program are the number of available macros,

which can perform most of the procedures discussed in this volume, and the

number of options available for many of these procedures. The only real

disadvantage to using the Stata macros is the rather limited number of data

entry formats these macros will accept.

Data entry
The data entry sheet is a spreadsheet. In Figure 44.6 the user has entered the events

and non-events for each study.

The standard meta-analysis macro metan will accept data in two formats, which

are events and non-events, means, standard deviations and sample size, and also in a

generic format of effect size and variance. All studies in the analysis must be in the

same format. To use the generic format the user would either compute these values

for each study outside of Stata, or compute them inside Stata using a series of

‘generate’ commands prior to calling the meta-analysis macros.
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The program will work with the following effect sizes: Raw mean difference,

standardized mean difference (Cohen’s d, Hedges’ g and Glass’ g), odds ratio (and

log odds ratio), risk ratio (and log risk ratio), and risk difference. Finally, the

program will work with a generic effect size.

Analysis
To perform an analysis, the user types a command with the names of the variables

and the desired options. The program displays a screen similar to the one shown in

Figure 44.7, and will

� Display results for fixed or random-effects models

� Display weights for either model

� Display a table of statistics including effect size, variance, standard error, con-

fidence limits, Q, T2, and I2.

Figure 44.7 Stata macros – analysis screen.

Figure 44.6 Stata macros – data entry screen for 2� 2 data.
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Create a forest plot
The Stata macros will create a forest plot as shown in Figure 44.8. The program

allows the user a few options for customizing the plot.

Sensitivity analysis
Macros are available to run the analysis repeatedly, removing a different study on

each pass, to show the impact of that study on the results. The user can also define

sets of studies and include or remove these as a block by writing the appropriate

code.

Perform subgroup analysis and meta-regression
When entering data the user can create categorical variables and enter a value (for

example, acute or chronic) for each study. In the analysis, the user can group by the

categorical variables and perform a subgroups analysis (analysis of variance).

Similarly, when entering data the user can create continuous variables, and then

perform a meta-regression.

Perform analyses for publication bias
Macros can create a funnel plot, and perform the Begg and Mazumdar and the Egger

tests for bias. They can also perform the Trim and Fill analysis, and a cumulative

analysis sorted by sample size or precision.

Study
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Figure 44.8 Stata macros – high resolution forest plot.
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Interface with other programs
Users can copy and paste summary data from any Windows-based spreadsheet into

Stata. They can also copy any computed values from Stata to the clipboard, and

from there into other programs.

Programs to compute effect sizes only

Some programs are available to assist the effect size calculation alone. For example

� Effect Size Version 2, developed by Will Shadish (http://faculty.ucmerced.edu/

wshadish/es.htm)

� An Excel spreadsheet by David Wilson incorporates formulas for many common

conversions. (es_calculator.zip, available from http://mason.gmu.edu/

�dwilsonb/ma.html)

Microsoft Excel, SPSS, SAS, Stata, Comprehensive Meta Analysis, Metawin, are

trademarks of their respective publishers.

SUMMARY POINTS

� We provide an overview of several meta-analysis programs.

� Detailed instructions for using these programs are available at www.Meta-

Analysis.com
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CHAPTER 45

Books, Web Sites and
Professional Organizations

BOOKS ON SYSTEMATIC REVIEW METHODS

Cooper, H., Hedges, L.V., Valentine, J. (eds) (2009) The Handbook of Research

Synthesis. New York, NY: Russell Sage.

Cooper, H. (2009). Research Synthesis and Meta-Analysis: A Step-by-Step

Approach. Thousand Oaks, CA: Sage.

Cooper, H. (1998). Synthesizing Research: A Guide for Literature Reviews. (3rd

edn). Thousand Oaks, CA: Sage.

Egger, M., Smith, G.W. & Altman, D.G. (2001). Systematic Reviews in Health

Care: Meta-analysis in Context (2nd edn). London, UK: BMJ Books.

Glasziou, P., Irwig, L., Bain, C., Colditz, G. (2001). Systematic Reviews in Health

Care: A Practical Guide. Cambridge, (UK): Cambridge University Press.

Higgins, J.P.T. & Green, S. (2008). Cochrane Handbook for Systematic Reviews of

Interventions. Chichester, (UK): John Wiley & Sons, Ltd.

Littell, J.H., Corcoran, J., & Pillai, V. (eds) (2008). Systematic Reviews and Meta-

analysis. New York, NY: Oxford University Press.

Khan, K.S., Kunz, R., Kleijnen, J., & Antes, G. (2003). Systematic Reviews to

Support Evidence-Based Medicine: How to Apply Findings of Healthcare

Research. London, UK: Royal Society of Medical Press Ltd.

Petticrew, M. & Roberts, H. (2006). Systematic Reviews in the Social Sciences:

A Practical Guide. Malden, MA: Blackwell.

Sutton, A.J., Abrams, K.R., Ades, A.S., Cooper, N.J., Welton, N. J. (2009) Evidence

Synthesis for Decision Making in Healthcare. Chichester, UK: John Wiley & Sons, Ltd.

BOOKS ON META-ANALYSIS

Hartung, J., Knapp, G. & Sinha, B.K. (2008). Statistical Meta-Analysis with

Applications. Hoboken, NJ: John Wiley & Sons, Inc.

Hedges, L.V. & Olkin, I. (1985). Statistical Methods for Meta-analysis. San Diego,

CA: Academic Press.
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Hunter, J.E. & Schmidt, F.L. (2004). Methods of Meta-analysis: Correcting Error

and Bias in Research Findings (2nd edn). Newbury Park, CA: Sage.

Lipsey, M.W. & Wison, D.B. (2001). Practical Meta-analysis. Thousand Oaks,

CA: Sage.

Rothstein, H.R., Sutton, A.J., Borenstein, M. Publication Bias in Meta-analysis:

Prevention, Assessment and Adjustments (2005). Chichester, UK: John Wiley &

Sons, Ltd.

Stangl, D.K. & Berry, D.A. (2000). Meta-analysis inn Medicine and Health Policy.

New York, NY: Marcel Dekker.

Sutton, A.J., Abrams, K.R., Jones, D.R, Song, F. (2000). Methods for Meta-Analysis

in Medical Research. Chichester, UK: John Wiley & Sons, Ltd.

Whitehead, A. (2002). Meta-Analysis of Controlled Clinical Trials. Chichester, UK:

John Wiley & Sons, Ltd.

Journals, special issues dedicated to meta-analysis

� Statistics in Medicine 1987, vol. 6, no. 3: themed issue on meta-analysis

� Journal of Educational and Behavioral Statistics 1992, vol. 17, no. 4: special

issue on meta-analysis

� Statistical Methods in Medical Research 1993, vol. 2, no. 2: themed issue on

meta-analysis

� International Journal of Epidemiology 2002, vol. 11, no. 1: themed issue on

Systematic reviews and meta-analysis

� Statistics in Medicine 2002 vol 21, no 11: proceedings from the 3rd Symposium

on Systematic Review Methodology

� Statistical Methods in Medical Research 2001, vol. 10, no. 4: themed issue on

meta-analysis, overviews and publication bias

WEB SITES

The James Lind Library

www.jameslindlibrary.org

This web site is dedicated to ‘Explaining and illustrating the development of fair

tests of treatments in health care’. As such, it provides a history of the field, from the

earliest randomized trials to the most recent developments. Iain Chalmers and his

colleagues have gathered key historical documents that help to put all current work

in fascinating perspective.

Comprehensive Meta-Analysis

www.Meta-Analysis.com

This is the site for this book and for the program Comprehensive Meta-Analysis.

The site includes the following
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� Free trial of Comprehensive Meta-Analysis

� Worked examples for this book and for other books on meta-analysis

� Papers on meta-analysis

� Links to web sites on meta-analysis and systematic reviews

� Links to courses and workshops on meta-analysis and systematic reviews

� Links to relevant conferences

The Cochrane Collaboration

www.Cochrane.org

The Cochrane Collaboration is composed of thousands of persons who work in

various fields related to health-care and volunteer some part of their time to

collaborate on systematic reviews.

The organization publishes (through Wiley) a database with results of systematic

reviews (currently more than 3700) on the utility of healthcare interventions. The

organization sponsors an annual international colloquium.

The Campbell Collaboration

www.campbellcollaboration.org

The Campbell Collaboration has a similar set of goals to Cochrane’s, but focuses on

the social sciences with working groups in such areas as crime and justice, educa-

tion, and social welfare. The organization sponsors an annual international

colloquium.

The Human Genome Epidemiology Network

www.cdc.gov/genomics/hugenet

The Human Genome Epidemiology Network (HuGENet) is a global collaboration

committed to the assessment of the impact of human genome variation on popula-

tion health. Their web site includes numerous systematic reviews (HuGE reviews)

and other resources to support meta-analyses of genetic association studies.
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